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§0 Problems

Problem 1. Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle

ABC. Suppose that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent.

Problem 2. The Planar National Park is a subset of the Euclidean plane consisting of several

trails which meet at junctions. Every trail has its two endpoints at two different junctions

whereas each junction is the endpoint of exactly three trails. Trails only intersect at junctions

(in particular, trails only meet at endpoints). Finally, no trails begin and end at the same two

junctions.

A visitor walks through the park as follows: she begins at a junction and starts walking along

a trail. At the end of that first trail, she enters a junction and turns left. On the next junction

she turns right, and so on, alternating left and right turns at each junction. She does this until

she gets back to the junction where she started. What is the largest possible number of times

she could have entered any junction during her walk, over all possible layouts of the park?

Problem 3. Let n ≥ 2 be an integer. An n × n board is initially empty. Each minute, you

may perform one of three moves:

• If there is an L-shaped tromino region of three cells without stones on the board (see

figure; rotations not allowed), you may place a stone in each of those cells.

• If all cells in a column have a stone, you may remove all stones from that column.

• If all cells in a row have a stone, you may remove all stones from that row.

For which n is it possible that, after some nonzero number of moves, the board has no stones?

Problem 4. A finite set S of positive integers has the property that, for each s ∈ S, and each

positive integer divisor d of s, there exists a unique element t ∈ S satisfying gcd(s, t) = d. (The

elements s and t could be equal.)

Given this information, find all possible values for the number of elements of S.

Problem 5. Let n ≥ 4 be an integer. Find all positive real solutions to the following system

of 2n equations:

a1 =
1

a2n
+

1

a2
, a2 = a1 + a3,

a3 =
1

a2
+

1

a4
, a4 = a3 + a5,

a5 =
1

a4
+

1

a6
, a6 = a5 + a7,

...
...

a2n−1 =
1

a2n−2
+

1

a2n
, a2n = a2n−1 + a1.
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Problem 6. Let ABCDEF be a convex hexagon satisfying AB ‖ DE, BC ‖ EF , CD ‖ FA,

and

AB ·DE = BC · EF = CD · FA.

Let X, Y , and Z be the midpoints of AD, BE, and CF . Prove that the circumcenter of4ACE,

the circumcenter of 4BDF , and the orthocenter of 4XY Z are collinear.
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§1 USAMO 2021/1 (Ankan Bhattacharya)

Problem 1 (USAMO 2021/1)

Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle ABC.

Suppose that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent.

Let O be the second intersection of (CAA1C2) and (ABB1A2). Observe that

]BOC = ]BOA+ ]AOC = ]BB1A+ ]AA1C = ]BC1C,

so O also lies on (BCC1B2).

A

B C

B2 C1

C2

A1
A2

B1
O

Now note that ]AOB1 = ]AOC2 = 90◦, so O lies on B1C2. Symmetrically, O lies on C1A2

and A1B2, so we are done.
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§2 USAMO 2021/2

Problem 2 (USAMO 2021/2)

The Planar National Park is a subset of the Euclidean plane consisting of several trails

which meet at junctions. Every trail has its two endpoints at two different junctions whereas

each junction is the endpoint of exactly three trails. Trails only intersect at junctions (in

particular, trails only meet at endpoints). Finally, no trails begin and end at the same two

junctions.

A visitor walks through the park as follows: she begins at a junction and starts walking

along a trail. At the end of that first trail, she enters a junction and turns left. On the

next junction she turns right, and so on, alternating left and right turns at each junction.

She does this until she gets back to the junction where she started. What is the largest

possible number of times she could have entered any junction during her walk, over all

possible layouts of the park?

The answer is 3. The upper bound is obvious to the meanest intelligence. One construction

is a pentagonal prism.
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§3 USAMO 2021/3

Problem 3 (USAMO 2021/3)

Let n ≥ 2 be an integer. An n×n board is initially empty. Each minute, you may perform

one of three moves:

• If there is an L-shaped tromino region of three cells without stones on the board (see

figure; rotations not allowed), you may place a stone in each of those cells.

• If all cells in a column have a stone, you may remove all stones from that column.

• If all cells in a row have a stone, you may remove all stones from that row.

For which n is it possible that, after some nonzero number of moves, the board has no

stones?

The answer is 3 | n, attained by dividing the n × n board into 3 × 3 squares and repeating

the n = 3 construction in all 3 × 3 squares simultaneously. Now we show that it is impossible

to clear the board if 3 - n.

Weight the squares of the board so that the cell (i, j) has weight xiyj , as shown below:
yn−1 xyn−1 x2yn−1 · · · xn−1yn−1

...
...

... . .
. ...

y2 xy2 x2y2 · · · xn−1y2

y xy x2y · · · xn−1y

1 x x2 · · · xn−1


Then adding a L-tromino is equivalent to increasing our net weight by a multiple of 1+x+y,

removing a row is equivalent to decreasing our net weight by a multiple of 1+x+ · · ·+xn−1, and

removing a column is equivalent to decreasing our net weight by a multiple of 1+y+ · · ·+yn−1.

Thus if we eventually clear the board, there are polynomials P , Q, R, with degx P ≤ n − 2

and degy P ≤ n− 2, such that

P (x, y) · (1 + x+ y) = Q(x, y) · (1 + x+ · · ·+ xn−1) +R(x, y) · (1 + y + · · ·+ yn−1).

In particular if ωi, ωj 6= 1 are nth roots of unity then

P (ωi, ωj) · (1 + ωi + ωj) = 0.

For 3 - n, we never have 1 +ωi +ωj = 0, so P (ωi, ωj) = 0 for all ωi, ωj . It should easily follow

that P (x, y) ≡ 0, say by combinatorial nullstellensatz.

Remark (Elementary justification for P (x, y) ≡ 0). We are given P (ωi, ωj) = 0 for nth roots of

unity ωi, ωj not equal to 1.

It follows that the polynomial (in x) P (x, ωj) has n− 1 roots for all ωj , but its degree is at most

n− 2, so P (x, ωj) ≡ 0. Then if P (x, y) = A0(y) +A1(y) · x+A2(y) · x2 + · · · , we know Ak(ωj) = 0

for all ωj , so Ak(y) ≡ 0, implying P (x, y) ≡ 0.
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§4 USAMO 2021/4 (Carl Schildkraut)

Problem 4 (USAMO 2021/4)

A finite set S of positive integers has the property that, for each s ∈ S, and each positive

integer divisor d of s, there exists a unique element t ∈ S satisfying gcd(s, t) = d. (The

elements s and t could be equal.)

Given this information, find all possible values for the number of elements of S.

The possible values of |S| are zero and powers of two.

Construction: Evidently S = ∅ works; now we construct a valid set S of 2k elements for

each k ≥ 0.

Select arbitrary distinct primes p1, p2, . . . , pk, q1, q2, . . . , qk. Then for each subset X ⊆
{1, . . . , k}, let S contain ∏

i∈X
pi
∏
i/∈X

qi.

It is easy to check that this works.

Proof of necessity: Observe for each s ∈ S that gcd(s, t) is always a divisor of s; therefore,

the map

S → {divisors of s} by t 7→ gcd(s, t)

is a bijection.

Let p be a prime that divides some element of S, and let e be maximal so that pe divides

some element of S. I contend e = 1.

Assume for contradiction e ≥ 2. Observe that exactly 1
e+1 of the divisors of s are not divisible

by p, so exactly 1
e+1 of the elements of S are not divisible by p. However, some divisor d | s has

νp(d) = 1, so some element t ∈ S has νp(t) = 1. By an analogous argument, exactly 1
2 of the

divisors of S are not divisible by p, implying

1

e+ 1
=

1

2
=⇒ e = 1.

At last, each element s ∈ S is of the form s =
∏

p∈P p for some set of distinct primes p, so

|S| = |{divisors of s}| = 2|P |,

as desired.
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§5 USAMO 2021/5

Problem 5 (USAMO 2021/5)

Let n ≥ 4 be an integer. Find all positive real solutions to the following system of 2n

equations:

a1 =
1

a2n
+

1

a2
, a2 = a1 + a3,

a3 =
1

a2
+

1

a4
, a4 = a3 + a5,

a5 =
1

a4
+

1

a6
, a6 = a5 + a7,

...
...

a2n−1 =
1

a2n−2
+

1

a2n
, a2n = a2n−1 + a1.

The answer is

a1 = a3 = a5 = · · · = a2n−1 = 1

a2 = a4 = a6 = · · · = a2n = 2,

which obviously works. Now we show this is the only solution.

First solution, by Cauchy-Schwarz (Ankit Bisain) First by summing the equations we obtain∑
aeven = 2

∑
aodd = 4

∑ 1

aeven
.

By Cauchy-Schwarz, we have(∑
aeven

)2
= 4

(∑
aeven

)(∑ 1

aeven

)
≥ 4n2,

so
∑
aeven ≥ 2n and therefore

∑
aodd ≥ n.

Now for each k we have

a22k+1 =
a2k+1

a2k
+
a2k+1

a2k+2
=

a2k+1

a2k−1 + a2k+1
+

a2k+1

a2k+1 + a2k+3
.

Summing this cyclically, we have
∑
a2odd = n.

Finally, by Cauchy-Schwarz again

n2 = (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
n ones

·
(∑

a2odd

)
≥
(∑

aodd

)2
≥ n2,

so equality holds and a1 = a3 = · · · = a2n−1.

It is immediate that a1 = a3 = · · · = a2n−1 = 1 and a2 = a4 = · · · = a2n = 2, and we are

done.
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Second solution, by bounding Define the function

f(x) :=

√
x2 + 8− x

2
,

and consider the sequence t0 = 0, t1 =
√

2, t2 =
√
10−
√
2

2 , . . . defined by tk+1 = f(tk).

Claim. For each k ≥ 0 and each i, we have

t2k < a2i+1 < t2k+1.

Proof. The proof is by induction. Obviously a2i+1 > 0 = t0 for all i; now we show that if

a2i+1 > tk for all i, then a2i+1 < tk+1 as well, and if a2i+1 < tk for all i, then a2i+1 > tk+1 as

well.

First suppose a2i+1 > tk for all i. Then

a2 = a1 + a3 > a1 + tk

a2n = a1 + a2n−1 > a1 + tk,

thus we have

a1 =
1

a2
+

1

a2n
<

2

a1 + tk
=⇒ a21 + tk · a1 − 2 < 0.

The quadratic formula gives a1 < tk+1, and applying this cyclically gives a2i+1 < tk+1 for all i.

Analogously if a2i+1 < tk for all i, we arrive at

a21 − tk · a1 − 2 > 0,

so the quadratic formula gives a1 > tk+1.

Finally, we may directly verify that for all ε > 0, we have

1 < f(1− ε) < 1 + ε/2

1− ε/2 < f(1 + ε) < 1.

Hence limk→∞ t2k = 1− and limk→∞ t2k+1 = 1+ (the k are integers).

This implies a2i+1 = 1 for all i, which in turn implies a2i = 2 for all i. This completes the

proof.

Third solution, by more efficient bounding (based on Andrew Gu’s solution) Let m =

min{a1, a3, . . . , a2n−1} and M = max{a1, a3, . . . , a2n−1}. Observe from

a2k+1 =
1

a2k
+

1

a2k+2
=

1

a2k+1 + a2k+3
+

1

a2k+1 + a2k−1

the bounds
2

a2k+1 +M
≤ a2k+1 ≤

2

a2k+1 +m
.

It follows by selecting k with a2k+1 = m and a2k+1 = M that

M ≤ 2

m+M
≤ m,

implying that M = m. Therefore a1 = a3 = · · · = a2n−1, and the conclusion readily follows.
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§6 USAMO 2021/6 (Ankan Bhattacharya)

Problem 6 (USAMO 2021/6)

Let ABCDEF be a convex hexagon satisfying AB ‖ DE, BC ‖ EF , CD ‖ FA, and

AB ·DE = BC · EF = CD · FA.

Let X, Y , and Z be the midpoints of AD, BE, and CF . Prove that the circumcenter of

4ACE, the circumcenter of 4BDF , and the orthocenter of 4XY Z are collinear.

In fact the orthocenter of 4XY Z is the midpoint of the segment between the two circum-

centers. We present two proofs.

First solution by parallelograms (mine) For clarity, the below diagram takes an extra degree

of freedom by ignoring the length condition.

Construct parallelograms FABA′, ABCB′, BCDC ′, CDED′, DEFE′, EFAF ′. In general,

observe that B′F ′ ‖ BC ‖ E′C ′ and (in directed lengths) B′F ′ = CB−EF = E′C ′, so4D′B′F ′
and 4A′E′C ′ are homothetic and directly congruent. This implies they are translations of each

other.

A

BC

D

E F

D′

B′
F ′

A′

E′ C ′

X

YZ

Claim. If AB ·DE = BC ·EF = CD ·FA, then the circumcenters of4D′B′F ′ and4ACE
coincide.

Proof. Observe that

Pow(A, (D′B′F ′)) = AB′ ·AF ′ = BC · FE,

which is fixed, so A, C, E have equal power with respect to (D′B′F ′).

Now let O1 and O2 be the circumcenters of4D′B′F ′ and4A′C ′E′. I contend that in general,

the midpoint of O1O2 coincides with the orthocenter of 4XY Z.

Let MDMBMF and MAMEMC be the medial triangles of 4DBF and 4AEC, so their

orthocenters are O1 and O2. It is easy to check that X, Y , Z are the midpoints of MDMA,

MBME , MFMC .
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But we know 4MDMBMF and 4MAMEMC are translations of each other, and 4XY Z is

their vector average, so we conclude the orthocenter of 4XY Z is the midpoint of O1O2. This

completes the proof.

Second solution by shared nine-point circle (author) First if points X, Y , Z coincide, then

the orthocenter of 4XY Z is the single point X = Y = Z, and also 4ACE and 4BDF are

180◦ rotations of each other through X = Y = Z, thus so are their circumcenters.

We assume henceforth X, Y , Z are not all the same point. Construct the medial triangles

NANCNE and NBNDNF of 4ACE and 4BDF respectively. The key claim is that the nine-

point circles of 4ACE and 4BDF coincide; that is:

Claim. If AB ·DE = BC ·EF = CD ·FA, then the six points NA, NC , NE , NB, ND, NF

are concyclic.

Proof. Observe that

XNB ·XNE =
1

2
AF · 1

2
DC =

1

2
DE · 1

2
AB = XNC ·XNF ,

so NB, NC , NE , NF are concyclic.

Then if the six points are not all concyclic, by radical axis theorem on (NBNCNENF ),

(NCNANFND), (NANBNDNE), the three lines NAND, NBNE , NCNF concur, i.e. X = Y = Z,

contradiction.

A

BC

D

E F

X

YZ
NA

NC

NE

NB

ND

NF

Now observe since

NAZ =
1

2
EF = Y ND

that the perpendicular bisectors of Y Z and NAND coincide, so the circumcenter of 4XY Z
coincides with the common nine-point center.

Toss on the complex plane with this common circumcenter as the origin. Then

orthocenter(4XY Z) = x+ y + z = 1
2(a+ b+ c+ d+ e+ f)

circumcenter(4ACE) = orthocenter(4NANCNE) = nA + nC + nE = a+ c+ e

circumcenter(4BDF ) = orthocenter(4NBNDNF ) = nB + nD + nF = b+ d+ f,

and so the orthocenter of 4XY Z is the claimed midpoint.
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