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8§80 Problems

Problem 1. Rectangles BCC1 By, CAA1Cs, and ABB; As are erected outside an acute triangle
ABC'. Suppose that
/BC1C+ LCA1A+ ZAB1B = 180°.

Prove that lines B1Cy, C1As, and A1 By are concurrent.

Problem 2. The Planar National Park is a subset of the Euclidean plane consisting of several
trails which meet at junctions. Every trail has its two endpoints at two different junctions
whereas each junction is the endpoint of exactly three trails. Trails only intersect at junctions
(in particular, trails only meet at endpoints). Finally, no trails begin and end at the same two
junctions.

A visitor walks through the park as follows: she begins at a junction and starts walking along
a trail. At the end of that first trail, she enters a junction and turns left. On the next junction
she turns right, and so on, alternating left and right turns at each junction. She does this until
she gets back to the junction where she started. What is the largest possible number of times
she could have entered any junction during her walk, over all possible layouts of the park?

Problem 3. Let n > 2 be an integer. An n X n board is initially empty. Each minute, you
may perform one of three moves:

e If there is an L-shaped tromino region of three cells without stones on the board (see
figure; rotations not allowed), you may place a stone in each of those cells.

e If all cells in a column have a stone, you may remove all stones from that column.
o If all cells in a row have a stone, you may remove all stones from that row.

For which n is it possible that, after some nonzero number of moves, the board has no stones?

Problem 4. A finite set S of positive integers has the property that, for each s € S, and each
positive integer divisor d of s, there exists a unique element ¢ € S satisfying ged(s,t) = d. (The
elements s and ¢ could be equal.)

Given this information, find all possible values for the number of elements of S.

Problem 5. Let n > 4 be an integer. Find all positive real solutions to the following system
of 2n equations:

1 1

ap=—+ —, az = a1 + ag,
a2n az
1 1

a3 =—+ —, a4 = a3 + as,
a9 aq
1 1

as = —+ —, ae = as + ay,
a4 Qg

1 1
aon—1 = + — aon = A2p—1 + a1.

Y
a2n—2 a2n
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Problem 6. Let ABCDEF be a convex hexagon satisfying AB || DE, BC | EF, CD || FA,
and
AB-DE =BC-EF =CD-FA.

Let X, Y, and Z be the midpoints of AD, BE, and CF. Prove that the circumcenter of AACE,
the circumcenter of ABDF', and the orthocenter of AXY Z are collinear.
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§1 USAMO 2021/1 (Ankan Bhattacharya)

Problem 1 (USAMO 2021/1)
Rectangles BCC1 By, CAA1Cs, and ABBj As are erected outside an acute triangle ABC.

Suppose that
/BC1C + LCA1A+ LZAB1 B = 180°.

Prove that lines B1Cy, C1 A5, and A1 By are concurrent.

Let O be the second intersection of (CAA;Cs) and (ABBjAs). Observe that
£BOC = £{BOA+ £AOC = {BB1A+ £AA,C = £BC,C,
so O also lies on (BCC}Bs).

A 4

BQ Cl

Now note that LAOB; = LAOC = 90°, so O lies on B1Cy. Symmetrically, O lies on CiAs

and A1 B, so we are done.
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§2 USAMO 2021/2

Problem 2 (USAMO 2021/2)

The Planar National Park is a subset of the Fuclidean plane consisting of several trails
which meet at junctions. Every trail has its two endpoints at two different junctions whereas
each junction is the endpoint of exactly three trails. Trails only intersect at junctions (in
particular, trails only meet at endpoints). Finally, no trails begin and end at the same two
junctions.

A visitor walks through the park as follows: she begins at a junction and starts walking
along a trail. At the end of that first trail, she enters a junction and turns left. On the
next junction she turns right, and so on, alternating left and right turns at each junction.
She does this until she gets back to the junction where she started. What is the largest
possible number of times she could have entered any junction during her walk, over all
possible layouts of the park?

The answer is 3. The upper bound is obvious to the meanest intelligence. One construction
is a pentagonal prism.
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§3 USAMO 2021/3

Problem 3 (USAMO 2021/3)

Let n > 2 be an integer. An n X n board is initially empty. Each minute, you may perform
one of three moves:

e If there is an L-shaped tromino region of three cells without stones on the board (see
figure; rotations not allowed), you may place a stone in each of those cells.

o If all cells in a column have a stone, you may remove all stones from that column.

e If all cells in a row have a stone, you may remove all stones from that row.

For which n is it possible that, after some nonzero number of moves, the board has no
stones?

The answer is 3 | n, attained by dividing the n x n board into 3 x 3 squares and repeating
the n = 3 construction in all 3 x 3 squares simultaneously. Now we show that it is impossible
to clear the board if 3 { n.

Weight the squares of the board so that the cell (i, j) has weight 2'y’, as shown below:

yn—l xyn—l :L,2yn—1 L xn—lyn—l_
y2 $y2 $2y2 xn—lyQ
y xy a2y "y
1 T 22 a1

Then adding a L-tromino is equivalent to increasing our net weight by a multiple of 1+ xz +y,
removing a row is equivalent to decreasing our net weight by a multiple of 1 +z+---+2""!, and
removing a column is equivalent to decreasing our net weight by a multiple of 14y 4 ---+3" 1.
Thus if we eventually clear the board, there are polynomials P, @, R, with deg, P < n — 2

and deg, P < n — 2, such that
Plzy)-(I+z+y)=Qzy) - L+ + - +a" )+ R(z,y) - (L+y+---+y" ).
In particular if w;,w; # 1 are nth roots of unity then
P(wi,wj) - (1 +w; +wj) =0.

For 3 t n, we never have 14+ w; +w; =0, so P(w;,w;) = 0 for all w;, w;. It should easily follow
that P(z,y) = 0, say by combinatorial nullstellensatz.

Remark (Elementary justification for P(z,y) = 0). We are given P(w;,w;) = 0 for nth roots of
unity w;, w; not equal to 1.

It follows that the polynomial (in z) P(z,w;) has n — 1 roots for all w;, but its degree is at most
n—2,s0 P(z,w;) = 0. Then if P(z,y) = Ao(y) + A1(y) -+ A2(y) - 22 + - - -, we know Ay (w;) =0
for all wj, so Ag(y) = 0, implying P(z,y) = 0.
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8§84 USAMO 2021/4 (Carl Schildkraut)

Problem 4 (USAMO 2021/4)

A finite set S of positive integers has the property that, for each s € S, and each positive
integer divisor d of s, there exists a unique element ¢ € S satisfying ged(s,¢) = d. (The
elements s and t could be equal.)

Given this information, find all possible values for the number of elements of S.

The possible values of |S| are zero and powers of two.

Construction: Evidently S = @ works; now we construct a valid set S of 2¥ elements for
each k£ > 0.
Select arbitrary distinct primes pi1, p2, ..., Pk, q1, 2, ---, G- Then for each subset X C

{1,...,k}, let S contain
Hpi H qi-
i€X  igX

It is easy to check that this works.

Proof of necessity: Observe for each s € S that ged(s,t) is always a divisor of s; therefore,
the map
S — {divisors of s} by t— ged(s,t)

is a bijection.

Let p be a prime that divides some element of S, and let e be maximal so that p® divides
some element of S. I contend e = 1.

Assume for contradiction e > 2. Observe that exactly ;11 of the divisors of s are not divisible
by p, so exactly eJ%l of the elements of S are not divisible by p. However, some divisor d | s has
vp(d) = 1, so some element t € S has 1,(t) = 1. By an analogous argument, exactly % of the
divisors of S are not divisible by p, implying

1 1

== = e=1.
e+ 1 2 €

At last, each element s € S is of the form s = Hpe p p for some set of distinct primes p, so
S| = |{divisors of s}| = 2P,

as desired.



USAMO 2021 Eric Shen (Last updated June 22, 2021)

§6 USAMO 2021/5

Problem 5 (USAMO 2021/5)
Let n > 4 be an integer. Find all positive real solutions to the following system of 2n
equations:
1 1
ay = — + —, az = ay + as,
a2n a2
1 1
ag = — + —, a4 = az + as,
as a4
1 1
as = — + —, ag = as + ar,
as  ag
1 1
2n—1 = +—, Q2n = Q2p—1 + a1.
a2n—2 a2n

The answer is

which obviously works. Now we show this is the only solution.

First solution, by Cauchy-Schwarz (Ankit Bisain) First by summing the equations we obtain

Zaeven:2zaodd:4z ! .

Aeven

By Cauchy-Schwarz, we have

(Caomn) = 4(Lawen) (X1 ) 2 0%

Qeven

SO Y Geven > 2n and therefore " agqq > n.
Now for each k& we have

2 _ Q2k+1 | G241 a2k+1 a2k+1
Q9k+1 = + = + .
a2k G2k+2  O2k—1 + G2k+1  G2k+1 + A2k+3

Summing this cyclically, we have > agdd =n.
Finally, by Cauchy-Schwarz again

2
n?=0+1+---+1)- (Zagdd> > <Zaodd> > n?

n ones

so equality holds and a1 = a3 =+ = asp_1.
It is immediate that a1 = a3 = --- = asp_1 =1 and a2 = a4 = --- = agy, = 2, and we are
done.
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Second solution, by bounding Define the function

2?2 +8—z

fla) =

and consider the sequence tg = 0, t; = V/2, to = m_ﬂ, ... defined by tx11 = f(tg).

Claim. For each k£ > 0 and each i, we have

tor < a2i+1 < tog+y1-

Proof. The proof is by induction. Obviously ag;+1 > 0 = #y for all i; now we show that if
agi41 > ti for all 4, then agi11 < tgy1 as well, and if ag;41 < tx for all ¢, then agj41 > tr41 as
well.

First suppose ag;+1 > ti for all . Then

as = a1 +az > a; +tg

Qon = a1 + agp—1 > a1 + g,

thus we have ! !
ag=—+— <
az  agp a1+t

— a?+tp-a—2<0.

The quadratic formula gives a; < tx11, and applying this cyclically gives ag;4+1 < tx11 for all i.
Analogously if ag;11 < ti for all ¢, we arrive at

a? —tp-a3 —2 >0,
so the quadratic formula gives a; > tx41. O
Finally, we may directly verify that for all € > 0, we have

I1<f(l—g)<l+4+¢g/2
1-e/2< f(1+e) <.

Hence limy,_ o0 tor, = 17 and limy_yo0 tor1 = 17 (the k are integers).
This implies ag;41 = 1 for all ¢, which in turn implies as; = 2 for all ¢. This completes the
proof.

Third solution, by more efficient bounding (based on Andrew Gu’s solution) Let m =

min{ay,as,...,as,—1} and M = max{aj,as,...,az,—1}. Observe from

1 1 1 1

agk41 = — + =
A2k A2k+2  Q2k+1 + Q2k43  G2k41 T A2k—1
the bounds
2 < < 2
— S a1 S ——.
agk+1 + M agk+1 +m

It follows by selecting k with asry+1 = m and agx11 = M that

2
<m,

M <
S A M-S

implying that M = m. Therefore a; = a3 = - -- = ag,—1, and the conclusion readily follows.
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§6 USAMO 2021/6 (Ankan Bhattacharya)

Problem 6 (USAMO 2021/6)
Let ABCDEF be a convex hexagon satisfying AB | DE, BC || EF, CD || FA, and

AB-DE =BC-EF =CD - FA.

Let X, Y, and Z be the midpoints of AD, BE, and CF. Prove that the circumcenter of
NACE, the circumcenter of ABDF, and the orthocenter of AXY Z are collinear.

In fact the orthocenter of AXY Z is the midpoint of the segment between the two circum-
centers. We present two proofs.

First solution by parallelograms (mine) For clarity, the below diagram takes an extra degree
of freedom by ignoring the length condition.

Construct parallelograms FABA', ABCB', BCDC', CDED’', DEFE', EFAF’. In general,
observe that B’F’ || BC || E’C’ and (in directed lengths) B'F' = CB—EF = E'C', so AD'B'F’
and AA'E'C’ are homothetic and directly congruent. This implies they are translations of each
other.

Claim. If AB-DE = BC-EF = CD-FA, then the circumcenters of AD'B'F’ and ANACE
coincide.

Proof. Observe that
Pow(A, (D'B'F")) = AB"- AF' = BC - FE,

which is fixed, so A, C, F have equal power with respect to (D'B'F"). O]

Now let O and O3 be the circumcenters of AD'B’F’ and AA’C'E’. 1 contend that in general,
the midpoint of 0104 coincides with the orthocenter of AXY Z.

Let MpMpMp and MsMgMc be the medial triangles of ADBF and AAEC, so their
orthocenters are Op and Os. It is easy to check that X, Y, Z are the midpoints of MpM4,
MpMg, MpMc.

10



USAMO 2021 Eric Shen (Last updated June 22, 2021)

But we know AMpMpgMp and AMsMpgMc are translations of each other, and AXY Z is
their vector average, so we conclude the orthocenter of AXY Z is the midpoint of O105. This
completes the proof.

Second solution by shared nine-point circle (author) First if points X, Y, Z coincide, then
the orthocenter of AXY Z is the single point X =Y = Z, and also AACFE and ABDF are
180° rotations of each other through X =Y = Z, thus so are their circumcenters.

We assume henceforth X, Y, Z are not all the same point. Construct the medial triangles
NANcNg and NgNpNp of AACE and ABDEF respectively. The key claim is that the nine-
point circles of AACE and ABDF coincide; that is:

Claim. If AB-DE = BC-EF = CD- FA, then the six points N4, N¢, Ng, Ng, Np, Np

are concyclic.

Proof. Observe that
1 1 1 1
XNp-XNpg = iAF . §DC = §DE : §AB = XN¢ - XNp,

so Np, N¢o, Ng, N are concyclic.

Then if the six points are not all concyclic, by radical axis theorem on (NgNcNgNp),
(NcNANFND), (NANBNDNE), the three lines NoNp, NgNg, NoNp concur,ie. X =Y = Z,
contradiction. O

Now observe since

1
NpZ = §EF:YND

that the perpendicular bisectors of YZ and NoNp coincide, so the circumcenter of AXY Z
coincides with the common nine-point center.
Toss on the complex plane with this common circumcenter as the origin. Then

orthocenter(AXYZ) =z +y+z2=3(a+b+c+d+e+ f)
circumcenter(AACE) = orthocenter(ANANcNg) =na+nc+ng=a+c+e
circumcenter(ABDF') = orthocenter(ANgNpNp) =np +np +np =b+d+ f,

and so the orthocenter of AXY Z is the claimed midpoint.

11



	Problems
	USAMO 2021/1 (Ankan Bhattacharya)
	USAMO 2021/2
	USAMO 2021/3
	USAMO 2021/4 (Carl Schildkraut)
	USAMO 2021/5
	USAMO 2021/6 (Ankan Bhattacharya)

