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§0 Problems

Problem 1. Let N be the set of positive integers. A function f : N→ N satisfies the equation

f(f(. . . f︸ ︷︷ ︸
f(n) times

(n) . . .)) =
n2

f(f(n))

for all positive integers n. Given this information, determine all possible values of f(1000).

Problem 2. Let ABCD be a cyclic quadrilateral satisfying AD2 +BC2 = AB2. The diagonals

of ABCD intersect at E. Let P be a point on side AB satisfying ∠APD = ∠BPC. Show that

line PE bisects CD.

Problem 3. Let K be the set of all positive integers that do not contain the digit 7 in their

base-10 representation. Find all polynomials f with nonnegative integer coefficients such that

f(n) ∈ K whenever n ∈ K.

Problem 4. Let n be a nonnegative integer. Determine the number of ways that one can

choose (n+ 1)2 sets Si,j ⊆ {1, 2, . . . , 2n}, for integers 0 ≤ i ≤ n and 0 ≤ j ≤ n such that:

• for all 0 ≤ i, j ≤ n, the set Si,j has i+ j elements; and

• Si,j ⊆ Sk,l whenever 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ n.

Problem 5. Two rational numbers m
n and n

m are written on a blackboard, where m and n are

relatively prime integers. At any point, Evan may pick two of the numbers x and y written on

the board and write either their arithmetic mean x+y
2 or their harmonic mean 2xy

x+y on the board

as well. Find all pairs (m,n) such that Evan can write 1 on the board in finitely many steps.

Problem 6. Find all polynomials P with real coefficients such that

P (x)

yz
+
P (y)

zx
+
P (z)

xy
= P (x− y) + P (y − z) + P (z − x)

holds for all nonzero real numbers x, y, z satisfying 2xyz = x+ y + z.

2



USAMO 2019 Eric Shen (Last updated June 12, 2020)

§1 USAMO 2019/1 (Evan Chen)

Problem 1 (USAMO 2019/1)

Let N be the set of positive integers. A function f : N→ N satisfies the equation

f(f(. . . f︸ ︷︷ ︸
f(n) times

(n) . . .)) =
n2

f(f(n))

for all positive integers n. Given this information, determine all possible values of f(1000).

The answer is all evens. It is not hard to check that any f that fixes the odds and is an involution

on the evens works. To prove f(1000) must be even, we present two solutions.

First solution, by induction In what follows, fk(n) means f iterated k times. Here we will

prove all solutions to the functional equation are of the above form: f fixes odds and is an

involution on the evens. Note that to prove only the original problem statement, Claims 1 and

2 suffice.

Claim 1. f is injective.

Proof. If f(a) = f(b), then

a2 = f2(a)ff(a)(a) = f2(b)ff(b)(b) = b2,

so a = b follows.

Claim 2. If n is odd, then f(n) = n.

Proof. We use strong induction on n, with no base case. Assume the claim holds for all odd

positive integers less than n.

Consider the equation

f2(n)ff(n)(n) = n2.

I contend both terms on the left equal n. Let m = f2(n). If m < n, then f2(n) = f2(m)

by inductive hypothesis, so n = m by injectivity, absurd. Thus f2(n) ≥ n. Analogously if

m = ff(n)(n) and m < n, then ff(n)(n) = ff(n)(m), so n = m by injectivity, absurd. Thus we

have f2(n) = ff(n)(n) = n.

Now the sequence n, f(n), f2(n), . . . repeats with period 2, so if f(n) is odd, then f(n) =

ff(n)(n) = n. Otherwise suppose f(n) is even, and let m = f(n). Then f(m) = n, so

m2 = f2(m)ff(m)(m) = n2, contradiction.

Claim 3. If n is even, then f2(n) = n.

Proof. The proof is similar to that of Claim 2. We use strong induction on n, with no base

case. Assume the claim holds for all even positive integers less than n; also recall that f fixes

odds and is injective, so f(n) is even for all even n.

Again consider the equation

f2(n)ff(n)(n) = n2.
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It will suffice to show, once more, both terms on the left equal n. Let m = f2(n). If m < n,

then f2(n) = f2(m), so n = m by injectivity, absurd, so f2(n) ≥ n. Similarly if m = ff(n)(n)

and m < n, then ff(n)(n) = m = ff(n)(m), so n = m by injectivity, absurd.

Hence f2(n) = n, as needed.

Second solution, by arrows (Espen Slettnes) Just as we did above, we first show f injective.

Indeed, if f(a) = f(b), then a2 = f2(a)ff(a)(a) = f2(b) = ff(b)(b) = b2, so f is injective.

Consider the sequence defined by x0 = 1000 and xi = f(xi−1) for all i ≥ 1. Letting n = xi in

the functional equation gives

ai+2ai+ai+1 = a2i . (∗)

Take i so that ai is minimal. Then ai+2 ≥ ai and ai+ai+1 ≥ ai, so by (∗) we must have ai+2 = ai.

By injectivity this reduces to a2 = a0, so (ai)i≥0 repeats with period 2.

Take i = 0 in (∗) to obtain aa1 = 1000. Then a1 = 1000 or a1 is even. End proof.
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§2 USAMO 2019/2 (Ankan Bhattacharya)

Problem 2 (USAMO 2019/2)

Let ABCD be a cyclic quadrilateral satisfying AD2 + BC2 = AB2. The diagonals of

ABCD intersect at E. Let P be a point on side AB satisfying ∠APD = ∠BPC. Show

that line PE bisects CD.

First solution, by symmedians There is a point P on side AB with AP = AD2/AB and

BP = BC2/AB. We have

PA

PB
=

(
AD

BC

)2

=

(
EA

EB

)2

since 4AED ∼ 4BEC. Then EP is the E-symmedian of 4EAB, so EP bisects CD.

By monotonicity it remains to check ∠APD = ∠BPC. Since AP · AB = AD2, we have

4APD ∼ 4ADB, and analogously 4BPC ∼ 4BCA. Hence ]APD = ]BDA = ]BCA =

]CPB, end proof.

Second (elementary) solution, from official solutions packet As before, construct P so that

AP ·AB = AD2 and BP ·BA = BC2. Then 4APD ∼ 4ADB, 4BPC ∼ 4BCA, so

θ := ]APD = ]BDA = ]BCA = ]CPB.

The task is to show PE bisects CD.

A B

C

D

P

E

K
L

Let K = AC ∩ PD, L = BD ∩ PC.

Claim 1. APLD and BPKC are cyclic.

Proof. These follow from ]LDA = θ = ]LPA and ]BCK = θ = ]BPK respectively.

Claim 2. AKLB is cyclic.

Proof. We have ]AKB = ]CKB = ]CPB = θ and similarly ]ALB = θ.

By Reim’s theorem on (ABCD), (AKLB), we have KL ‖ CD. If M = PE ∩ CD, then

MC = MD by Ceva’s theorem on 4PCD.
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Third solution, by radical axes Let Ω be the circumcircle of ABCD, let Γ be the circle with

diameter AB, and let ωA, ωB be the circles centered at A, B with radii AD, BC, respectively.

A B

C

D

P

E

Y

Z

T

U

V

The condition AD2 + BC2 = AB2 means ωA, ωB are orthogonal, so their intersection points

Y , Z lie on Γ. Let P be the midpoint of Y Z. Then P lies on AB, the radical axis of Ω, Γ, so

P is the common radical center of Ω, Γ, ωA, ωB.

Let the tangents to Ω at A, B meet at T , and let DP , CP meet Ω again at U , V . Since DU

is the radical axis of Ω, ωA, we have AT ‖ DU . Similarly BT ‖ CV , so ]APD = ]BAT =

]TBA = ]CPB. By monotonicity, P is the point described in the problem statement.

Finally we have
PA

PB
=

(
Y A

Y B

)2

=

(
AD

BC

)2

=

(
EA

EB

)2

,

so EP is the E-symmedian of 4EAB, which bisects CD.

Remark. This was my solution in-contest, and I believe it is pretty motivated. The four circles in

the problem are the most natural way to construct the diagram, and an in-scale diagram suggests

P lies on Y Z. The rest is not hard to prove.

Fourth solution, by inversion (Evan Chen) As noted above, the circle ωA centered at A with

radius AD is orthogonal to the circle ωB centered at B with radius BC. We let IA, IB denote

inversion with respect to ωA, ωB.

Let the radical axis of ωA, ωB intersect AB at P ; by design, P = IA(B) = IB(A). This

already implies that

]APD
IA= ]BDA = ]BCA

IB= ]CPB,

so by monotonicity, P is the point described in the problem statement.

Claim. The point K = IA(C) lies on ωB and DP . Similarly L = IB(D) lies on ωA and

CP .

Proof. Since ωA ⊥ ωB, it follows that K ∈ ωB. For K ∈ DP , note ABCD is cyclic, so

P = IA(B), K = IA(C), D = IA(D) are collinear.

Finally since C, L, P collinear, A is concyclic with K = IA(C), L = IA(L), B = IA(B), i.e.

AKLB is cyclic. Hence KL ‖ CD by Reim’s theorem, and PE bisects CD by Ceva’s theorem.
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§3 USAMO 2019/3 (Titu Andreescu, Cosmin Pohoata, Vlad
Matei)

Problem 3 (USAMO 2019/3)

Let K be the set of all positive integers that do not contain the digit 7 in their base-

10 representation. Find all polynomials f with nonnegative integer coefficients such that

f(n) ∈ K whenever n ∈ K.

It is easy to verify these functions work: f ≡ d, f(n) ≡ 10en, and f(n) ≡ 10en + d for e ≥ 0,

d < 10e, and d ∈ K. We prove they are the only solutions.

Say a function is happy if the problem condition is satisfied. The key is the tackle monomials

first. In particular, we claim:

Lemma (Monomial case)

If a nonconstant function of the form f(n) ≡ cnd is happy, then c is a power of 10 and

d = 1.

The lemma follows from the following two claims:

Claim 1. If f(n) = cn is happy, then c is a power of 10.

Proof. We have 1, c, c2, c3, . . . are all elements of K, but if log10 c is irrational, then for some

k we have {log10 c
k} ∈ [log10 7, log10 8); that is, the leftmost digit of ck is 7, contradiction.

Claim 2. If f(n) = cnd is happy, then d ∈ {0, 1}.

Proof. Assume d > 0. If n ∈ K, then 10en+ 3 ∈ K for each e ≥ 1; in particular,

K 3 f(10en+ 3) = c · 3d + cd · 3d−1 · 10en+ c

(
d

2

)
· 3d−2 · 102en2 + · · · ,

so by taking e sufficiently large, cd · 3d−1n ∈ K for all n. Thus the function g(n) = cd · 3d−1n

is happy, so cd · 3d−1 is a power of 10 by the first claim. Then d = 1 follows.

Having established the lemma, we now solve the general case. Let f(n) = a0+a1n+a2n
2+· · · ,

and for each n, plug in f(10en) where 10e > akn
k for each k. It follows that each of the

monomials a0, a1n, a2n
2, . . . are elements of K, so the function gk(n) ≡ aknk is happy for each

k.

It follows that either f ≡ d or f(n) ≡ 10en+ d for some e, d, and we can directly check that

if d 6= 0, then d < 10e and d ∈ K.
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§4 USAMO 2019/4 (Ricky Liu)

Problem 4 (USAMO 2019/4)

Let n be a nonnegative integer. Determine the number of ways that one can choose (n+1)2

sets Si,j ⊆ {1, 2, . . . , 2n}, for integers 0 ≤ i ≤ n and 0 ≤ j ≤ n such that:

• for all 0 ≤ i, j ≤ n, the set Si,j has i+ j elements; and

• Si,j ⊆ Sk,l whenever 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ n.

The answer is (2n)! · 2n2
.

First solution, by direct computation Place the sets in an (n+ 1)× (n+ 1) grid shown below,

and select the blue sets S0,0, S0,1, . . ., S0,n, S1,n, . . ., Sn,n. Each admits exactly one more

element than the previous set in the sequence, so there are (2n)! ways to select the blue sets.
1357 12357 123457 1234578 12345678

135 1345 13457 134578 1345678

13 135 1357 13578 135678

1 15 157 1578 15678

∅ 5 57 578 5678


It remains to select the remaining sets. First note that the conditions given in the problem

statement are equivalent to Si,j ⊂ Si+1,j and Si,j ⊂ Si,j+1 for all 0 ≤ i, j ≤ n (by transitivity).

We determine the remaining sets in the following order: S1,n−1, S1,n−2, . . ., S1,0, S2,n−1,

S2,n−2, . . ., S2,0, and so on. When it comes to determine Si,j , we will have already chosen Si−1,j

and Si,j+1. [
1357 12357

135 1345

]
It is given Si,j \Si−1,j is a single-element subset of Si,j+1 \Si−1,j , which has cardinality 2; hence

we have 2 choices.

There were (2n)! ways to select the initially blue sets, and 2n
2

ways to select the remaining

sets. The conclusion follows.

Second solution, by bijection (Daniel Zhu) Arrange the sets into the obvious (n+1)×(n+1)

square grid. Here, we orient the grid diagonally so that S0,0 is on the bottom and Sn,n is on

the top. Label an internal edge with i if crossing an edge while going up adds the element i to

the set in the relevant square.
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5

1

4

5

4

6

3

4

6

4

6

2

1

1

4

6

5

3

3

3

3

4

6

2

∅

5

15

145

1

15

145

1456

15

135

1345

13456

135

1345

13456

123456

It follows from the Si,j ⊆ Sk,` condition that the set of edges with label i must follow a

path from the left end of the square to the right end of the square, so we can associate every

valid arrangement of sets with a partitioning of the internal edges into 2n paths, labeled 1, 2,

. . ., 2n, traveling from the left end of the square to the right end of the square. Indeed, this

correspondence is reversible, since given the system of labeled paths one can associate a square

with the set of all numbers k so that the path labeled with k passes below the square.

It suffices to show that there are 2n
2

ways to choose all the ways to partition the unlabeled

edges into 2n unlabeled paths. However, since every edge is utilized, this is equivalent to, for

each of the n2 internal vertices, choosing whether the two paths that pass through the vertex

end up crossing or not. Thus, we are done.
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§5 USAMO 2019/5 (Yannick Yao)

Problem 5 (USAMO 2019/5)

Two rational numbers m
n and n

m are written on a blackboard, where m and n are relatively

prime integers. At any point, Evan may pick two of the numbers x and y written on the

board and write either their arithmetic mean x+y
2 or their harmonic mean 2xy

x+y on the board

as well. Find all pairs (m,n) such that Evan can write 1 on the board in finitely many

steps.

This is possible if and only if m + n is a power of 2. In what follows, let r = m
n , so we begin

with r and 1
r on the board.

Proof of sufficiency: Assume m+ n is a power of 2. It is possible to write 1 on the board

only by taking arithmetic means.

Claim 1. If x and y are on the board, then for all nonnegative integers u, v, t with

u+ v = 2t, it is possible to construct

u

2t
· x+

v

2t
· y.

Proof. The proof is by induction on t, with t = 0 given. Now suppose the hypothesis holds for

t; we will show it holds for t+ 1.

For u+ v = 2t+1, if 0 ∈ {u, v}, then we are already done. Otherwise, note that

u

2t+1
· x+

v

2t+1
· y =

1

2

[(
1

2t
· x+

1

2t
· y
)

+

(
u− 1

2t
· x+

v − 1

2t
· y
)]

,

which is constructable.

Finally take x = r, y = 1
r , u = n, v = m. We can construct

n

m+ n
· r +

m

m+ n
· 1

r
= 1.

Proof of necessity: Suppose p is an odd prime dividing m+ n. Then both numbers on the

board are equivalent to −1 (mod p). The main idea is in the following claim:

Claim 2. If x ≡ y ≡ −1 (mod p), then both their arithmetic mean and harmonic mean

are −1 (mod p).

Proof. This is fairly obvious: since 2 6≡ 0 (mod p) and x+ y ≡ −2 6≡ 0 (mod p), we can check

x+ y

2
≡ −2

2
≡ −1 (mod p) and

2xy

x+ y
≡ 2

1
x + 1

y

≡ 2

−2
≡ −1 (mod p),

and the claim follows.

If Evan can write 1 on the board, then 1 ≡ −1 (mod p), which is absurd.
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§6 USAMO 2019/6 (Titu Andreescu, Gabriel Dospinescu)

Problem 6 (USAMO 2019/6)

Find all polynomials P with real coefficients such that

P (x)

yz
+
P (y)

zx
+
P (z)

xy
= P (x− y) + P (y − z) + P (z − x)

holds for all nonzero real numbers x, y, z satisfying 2xyz = x+ y + z.

The answer is P (x) ≡ A(x2 + 3) for any real number A, which all work. We now prove these

are the only solutions.

Consider the polynomial

Q(x, y, z) := xP (x) + yP (y) + zP (z)

− xyz
[
P (x− y) + P (y − z) + P (z − x)

]
.

The main idea is this:

Claim. Q(x, y, z) = 0 for all complex numbers x, y, z satisfying 2xyz + x+ y + z.

Proof. We are given Q(x, y, z) = 0 for all real numbers x, y, z satisfying 2xyz = x+ y+ z, thus

the rational function

R(x, y) := Q

(
x, y,

x+ y

2xy − 1

)
has infinitely many roots, i.e. R ≡ 0.

Since Q(x,−x, 0) = 0, we have P is even. Also note

0 = Q

(
x,

i√
2
,
−i√

2

)
=⇒ xP (x) =

x

2

[
P

(
x+

i√
2

)
+ P

(
x− i√

2

)
+ P (

√
2i)

]
=⇒ −P (

√
2i) ≡ P

(
x+

i√
2

)
+ P

(
x− i√

2

)
− 2P (x).

The right-hand expression is a second-order finite difference, so it has degree degP − 2. The

left-hand expression is constant, so degP ∈ {0, 2}, and P (x) ≡ Ax2 +B for some A, B.

Finally check that

2A−B = −P (
√

2i) = A

[(
x+

i√
2

)2

+

(
x− i√

2

)2

− 2x2

]
= −A,

so A = 3B, as needed.
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