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8§80 Problems

Problem 1. Let N be the set of positive integers. A function f : N — N satisfies the equation

f(n) times
for all positive integers n. Given this information, determine all possible values of f(1000).

Problem 2. Let ABCD be a cyclic quadrilateral satisfying AD? + BC? = AB?. The diagonals
of ABCD intersect at E. Let P be a point on side AB satisfying ZAPD = Z/BPC. Show that
line PE bisects CD.

Problem 3. Let K be the set of all positive integers that do not contain the digit 7 in their
base-10 representation. Find all polynomials f with nonnegative integer coeflicients such that
f(n) € K whenever n € K.

Problem 4. Let n be a nonnegative integer. Determine the number of ways that one can
choose (n + 1)? sets Sij €{1,2,...,2n}, for integers 0 < ¢ < n and 0 < j < n such that:

o for all 0 <i,j < n, the set 5;; has i + j elements; and
e S;; CSkywhenever 0 <i<k<nand0<j<I<n.

Problem 5. Two rational numbers * and ;- are written on a blackboard, where m and n are

relatively prime integers. At any point, Evan may pick two of the numbers z and y written on
the board and write either their arithmetic mean % or their harmonic mean i% on the board

as well. Find all pairs (m,n) such that Evan can write 1 on the board in finitely many steps.

Problem 6. Find all polynomials P with real coefficients such that

Py(:) + P;g) + ]1-(;) =Plx—y)+Ply—z)+ P(z—=x)

holds for all nonzero real numbers z, y, z satisfying 2xyz = x + y + z.
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§1 USAMO 2019/1 (Evan Chen)

Problem 1 (USAMO 2019/1)
Let N be the set of positive integers. A function f: N — N satisfies the equation

f(n) times

for all positive integers n. Given this information, determine all possible values of f(1000).

The answer is all evens. It is not hard to check that any f that fixes the odds and is an involution
on the evens works. To prove f(1000) must be even, we present two solutions.

First solution, by induction In what follows, f*(n) means f iterated k times. Here we will
prove all solutions to the functional equation are of the above form: f fixes odds and is an
involution on the evens. Note that to prove only the original problem statement, Claims 1 and
2 sulffice.

I Claim 1. f is injective.

Proof. If f(a) = f(b), then
a® = f2(a) {1 a) = £ (0) F1O(0) = 07,

so a = b follows. d
Claim 2. If n is odd, then f(n) =n.

Proof. We use strong induction on n, with no base case. Assume the claim holds for all odd
positive integers less than n.
Consider the equation

£ 10 () = .

I contend both terms on the left equal n. Let m = f2(n). If m < n, then f2(n) = f2(m)
by inductive hypothesis, so n = m by injectivity, absurd. Thus f?(n) > n. Analogously if
m = f/™(n) and m < n, then f/™(n) = /™ (m), so n = m by injectivity, absurd. Thus we
have f2(n) = f/"(n) = n.

Now the sequence n, f(n), f2(n), ... repeats with period 2, so if f(n) is odd, then f(n) =
ff™(n) = n. Otherwise suppose f(n) is even, and let m = f(n). Then f(m) = n, so
m? = f2(m)ff™ (m) = n?, contradiction. O

Claim 3. If n is even, then f?(n) = n.

Proof. The proof is similar to that of Claim 2. We use strong induction on n, with no base
case. Assume the claim holds for all even positive integers less than n; also recall that f fixes
odds and is injective, so f(n) is even for all even n.

Again consider the equation

FA(m) 1 (n) = n.
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It will suffice to show, once more, both terms on the left equal n. Let m = f2(n). If m < n,
then f2(n) = f2(m), so n = m by injectivity, absurd, so f2(n) > n. Similarly if m = /(") (n)
and m < n, then f7™(n) =m = /" (m), so n = m by injectivity, absurd.

Hence f?(n) = n, as needed. O

Second solution, by arrows (Espen Slettnes) Just as we did above, we first show f injective.
Indeed, if f(a) = f(b), then a® = f2(a)f/@(a) = f2(b) = fF®)(b) = b%, s0 f is injective.
Consider the sequence defined by xy = 1000 and z; = f(z;—1) for all i > 1. Letting n = z; in
the functional equation gives
Ai+20it+a; 1 = az?' (*)

Take ¢ so that a; is minimal. Then a;42 > a; and a;44,,, > a;, so by () we must have a;12 = a;.

By injectivity this reduces to as = ag, so (a;);>0 repeats with period 2.
Take ¢ = 0 in (*) to obtain ag, = 1000. Then a; = 1000 or a; is even. End proof.
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§2 USAMO 2019/2 (Ankan Bhattacharya)

Problem 2 (USAMO 2019/2)

Let ABCD be a cyclic quadrilateral satisfying AD? + BC? = AB?. The diagonals of
ABCD intersect at E. Let P be a point on side AB satisfying ZAPD = /BPC. Show
that line PE bisects CD.

First solution, by symmedians There is a point P on side AB with AP = AD?/AB and
BP = BC?/AB. We have

PA  (AD\? [EA\’

7o~ (3c) = (22)

since AAED ~ ABEC. Then EP is the E-symmedian of AEAB, so EP bisects CD.

By monotonicity it remains to check ZAPD = /BPC. Since AP - AB = AD?  we have
ANAPD ~ ANADB, and analogously ABPC ~ ABCA. Hence {APD = {BDA = {BCA =
£CPB, end proof.

Second (elementary) solution, from official solutions packet As before, construct P so that
AP-AB = AD? and BP - BA = BC?. Then AAPD ~ AADB, ABPC ~ ABCA, so

0 := LAPD = {BDA = {BCA = LCPB.

The task is to show PFE bisects CD.

Let K =ACNPD,L=BDnPC.

I Claim 1. APLD and BPKC are cyclic.
Proof. These follow from {LDA =60 = {LPA and {BCK = 0 = £ BPK respectively. O
| Claim 2. AKLB is cyclic.

Proof. We have {AKB = {CKB = L{CPB = 6 and similarly LALB = 0. O

By Reim’s theorem on (ABCD), (AKLB), we have KL | CD. If M = PE N CD, then
MC = MD by Ceva’s theorem on APCD.
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Third solution, by radical axes Let {2 be the circumcircle of ABCD, let I" be the circle with
diameter AB, and let w4, wp be the circles centered at A, B with radii AD, BC, respectively.

The condition AD? 4+ BCO? = AB? means w4, wp are orthogonal, so their intersection points
Y, Z lie on I'. Let P be the midpoint of YZ. Then P lies on AB, the radical axis of Q, I, so
P is the common radical center of Q, I', wa, wp.

Let the tangents to © at A, B meet at T, and let DP, CP meet € again at U, V. Since DU
is the radical axis of 2, wa, we have AT || DU. Similarly BT || CV, so £{APD = {BAT =
£TBA = LCPB. By monotonicity, P is the point described in the problem statement.

Finally we have
PA_ (YA (AD\*_ (EA\’
PB \YB) \BC) \EB)’
so EP is the E-symmedian of AEAB, which bisects CD.

Remark. This was my solution in-contest, and I believe it is pretty motivated. The four circles in
the problem are the most natural way to construct the diagram, and an in-scale diagram suggests
P lies on YZ. The rest is not hard to prove.

Fourth solution, by inversion (Evan Chen) As noted above, the circle w4 centered at A with
radius AD is orthogonal to the circle wp centered at B with radius BC. We let 14, Ip denote
inversion with respect to w4, wpg.
Let the radical axis of wa, wp intersect AB at P; by design, P = 14(B) = Ig(A). This
already implies that
LAPD ™ (BDA = {BCA £ LCPB,

so by monotonicity, P is the point described in the problem statement.

Claim. The point K = I4(C) lies on wp and DP. Similarly L = Iz(D) lies on w4 and
CP.

Proof. Since wa 1 wpg, it follows that K € wp. For K € DP, note ABCD is cyclic, so
P=14(B), K =14(C), D =14(D) are collinear. O

Finally since C, L, P collinear, A is concyclic with K = I4(C), L = I4(L), B =14(B), i..
AKLB is cyclic. Hence KL || CD by Reim’s theorem, and PE bisects C'D by Ceva’s theorem.
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§3 USAMO 2019/3 (Titu Andreescu, Cosmin Pohoata, Vlad
Matei)

Problem 3 (USAMO 2019/3)

Let K be the set of all positive integers that do not contain the digit 7 in their base-
10 representation. Find all polynomials f with nonnegative integer coefficients such that
f(n) € K whenever n € K.

It is easy to verify these functions work: f =d, f(n) = 10°n, and f(n) = 10°n + d for e > 0,
d < 10°, and d € K. We prove they are the only solutions.

Say a function is happy if the problem condition is satisfied. The key is the tackle monomials
first. In particular, we claim:

Lemma (Monomial case)

If a nonconstant function of the form f(n) = cn? is happy, then c is a power of 10 and
d=1.

The lemma follows from the following two claims:
I Claim 1. If f(n) = en is happy, then ¢ is a power of 10.

Proof. We have 1, ¢, ¢2, ¢3, ... are all elements of K, but if logy, ¢ is irrational, then for some
k we have {log;oc¥} € [logyo7,log;o8); that is, the leftmost digit of c¥ is 7, contradiction. [

I Claim 2. If f(n) = cn? is happy, then d € {0,1}.
Proof. Assume d > 0. If n € K, then 10°n + 3 € K for each e > 1; in particular,
d
K> f(10°n+3) =c-3%+cd- 3971 10%0 + c(2> 23972 10% 02 4.

so by taking e sufficiently large, cd - 3%~'n € K for all n. Thus the function g(n) = cd - 3¢ n

is happy, so cd - 397! is a power of 10 by the first claim. Then d = 1 follows. O

Having established the lemma, we now solve the general case. Let f(n) = ap+ain+asn?+-- -,
and for each n, plug in f(10°n) where 10° > azn® for each k. It follows that each of the
monomials ag, ain, asn?, ... are elements of K, so the function g(n) = ayn” is happy for each
k.

It follows that either f = d or f(n) = 10°n + d for some e, d, and we can directly check that
if d # 0, then d < 10° and d € K.
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§4 USAMO 2019/4 (Ricky Liu)

Problem 4 (USAMO 2019/4)

Let n be a nonnegative integer. Determine the number of ways that one can choose (n+1)?
sets S;; € {1,2,...,2n}, for integers 0 <i < n and 0 < j < n such that:

e for all 0 <4,j < n, the set S;; has i 4 j elements; and

e S;j €Sy whenever 0 <i<k<nand0<j<I<n.

The answer is (2n)! - 2",

First solution, by direct computation Place the sets in an (n+1) x (n+1) grid shown below,
and select the blue sets So0, So1, ---, Sons Sim, ---, Snn. Each admits exactly one more
element than the previous set in the sequence, so there are (2n)! ways to select the blue sets.

(1357 12357 123457 1234578 12345678 ]
135 1345 13457 134578 1345678
13 135 1357 13578 135678
1 15 157 1578 15678
@ 5 57 578 5678

It remains to select the remaining sets. First note that the conditions given in the problem
statement are equivalent to S; ; C Siy1,; and S; ; C S; j41 for all 0 < 4,5 < n (by transitivity).

We determine the remaining sets in the following order: S1,-1, S1n—2, ---, S1,0, S2,n—1,
S2.n—2 - -+, S2,0, and so on. When it comes to determine S; ;, we will have already chosen S;_1 ;
and Si,j—l—l-

1357 12357
135 1345

It is given S; ; \ Si—1,; is a single-element subset of S; j11\ S;—1 ;, which has cardinality 2; hence
we have 2 choices.

There were (2n)! ways to select the initially blue sets, and on’ ways to select the remaining
sets. The conclusion follows.

Second solution, by bijection (Daniel Zhu) Arrange the sets into the obvious (n+1) x (n+1)
square grid. Here, we orient the grid diagonally so that Spo is on the bottom and S, , is on
the top. Label an internal edge with 7 if crossing an edge while going up adds the element ¢ to
the set in the relevant square.
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It follows from the S;; C S condition that the set of edges with label ¢ must follow a
path from the left end of the square to the right end of the square, so we can associate every
valid arrangement of sets with a partitioning of the internal edges into 2n paths, labeled 1, 2,
..., 2n, traveling from the left end of the square to the right end of the square. Indeed, this
correspondence is reversible, since given the system of labeled paths one can associate a square
with the set of all numbers &k so that the path labeled with k£ passes below the square.

It suffices to show that there are 27° ways to choose all the ways to partition the unlabeled
edges into 2n unlabeled paths. However, since every edge is utilized, this is equivalent to, for
each of the n? internal vertices, choosing whether the two paths that pass through the vertex
end up crossing or not. Thus, we are done.
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§6 USAMO 2019/5 (Yannick Yao)

Problem 5 (USAMO 2019/5)

Two rational numbers 7* and ;- are written on a blackboard, where m and n are relatively

prime integers. At any point, Evan may pick two of the numbers  and y written on the
board and write either their arithmetic mean L;ry or their harmonic mean % on the board

as well. Find all pairs (m,n) such that Evan can write 1 on the board in finitely many
steps.

This is possible if and only if m + n is a power of 2. In what follows, let r = **, so we begin

with r and % on the board.

Proof of sufficiency: Assume m + n is a power of 2. It is possible to write 1 on the board
only by taking arithmetic means.

Claim 1. If x and y are on the board, then for all nonnegative integers u, v, t with
u+v = 2%, it is possible to construct

u (%

Proof. The proof is by induction on ¢, with ¢ = 0 given. Now suppose the hypothesis holds for
t; we will show it holds for ¢ + 1.
For u + v = 271 if 0 € {u, v}, then we are already done. Otherwise, note that

U v 1 1 1 u—1 v—1
g Cham VT [\ ) T\ Y

which is constructable. O

Finally take x = r, y = %, u =mn, v =m. We can construct

n m 1

r 4+ = 1.

m—i—n' m—i—n';

Proof of necessity: Suppose p is an odd prime dividing m 4+ n. Then both numbers on the
board are equivalent to —1 (mod p). The main idea is in the following claim:

Claim 2. If x = y = —1 (mod p), then both their arithmetic mean and harmonic mean
are —1 (mod p).

Proof. This is fairly obvious: since 2 # 0 (mod p) and z +y = —2 # 0 (mod p), we can check

-2 2 2 2
Tty =—=-1 (modp) and i =1——5=-——5=-1 (modp),
2 2 T+Yy > T

and the claim follows. O

If Evan can write 1 on the board, then 1 = —1 (mod p), which is absurd.

10
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§6 USAMO 2019/6 (Titu Andreescu, Gabriel Dospinescu)

Problem 6 (USAMO 2019/6)

Find all polynomials P with real coefficients such that

Py(:) + PZ(;U) 4 P;;) =Plz—y)+Ply—z2)+P(z—x)

holds for all nonzero real numbers z, y, z satisfying 2xyz = x + y + z.

The answer is P(z) = A(2? + 3) for any real number A, which all work. We now prove these
are the only solutions.
Consider the polynomial

Qz,y,2) = 2P (x) + yP(y) + 2P(2)
—zyz[P(z —y) + Py — z) + P(z — 2)].

The main idea is this:

Claim. Q(z,y,z) =0 for all complex numbers z, y, z satisfying 2zyz + = + y + 2.

Proof. We are given Q(x,y, z) = 0 for all real numbers z, y, z satisfying 2xyz = z 4+ y + 2, thus

the rational function
xr+y
R =
(z,9) ==Q <wy 2wy 1)

has infinitely many roots, i.e. R = 0. O

Since Q(z, —z,0) = 0, we have P is even. Also note

= HTP(w):;C[P <x+\}§> +P(m—\;§) +P(\@i)]

— —P(V2i)=P <m + \%) +P (a: - é) —2P(z).

The right-hand expression is a second-order finite difference, so it has degree deg P — 2. The
left-hand expression is constant, so deg P € {0,2}, and P(z) = Az? + B for some A, B.

Finally check that
i 2 i 2
2A— B =-P(V2i)=A x+) —|—(ac—> — 22?2 | = —A,
va=4|(o+ 5 V2

so A = 3B, as needed.
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