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§0 Problems

Problem 1. Let a, b, c be positive real numbers such that a+ b+ c = 4 3
√
abc. Prove that

2(ab+ bc+ ca) + 4 min(a2, b2, c2) ≥ a2 + b2 + c2.

Problem 2. Find all functions f : R>0 → R>0 such that

f

(
x+

1

y

)
+ f

(
y +

1

z

)
+ f

(
z +

1

x

)
= 1

for all positive real numbers x, y, z with xyz = 1.

Problem 3. For a given integer n ≥ 2, let {a1, a2, . . . , am} be the set of positive integers less

than n that are relatively prime to n. Prove that if every prime that divides m also divides n,

then ak1 + ak2 + · · ·+ akm is divisible by m for every positive integer k.

Problem 4. Let p be a prime, and let a1, . . . , ap be integers. Show that there exists an integer

k such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

Problem 5. In convex cyclic quadrilateral ABCD, lines AC and BD intersect at E, lines AB

and CD intersect at F , and lines BC and DA intersect at G. Suppose that the circumcircle of

4ABE intersects line CB at B and P , and the circumcircle of 4ADE intersects line CD at

D and Q, where C, B, P , G and C, Q, D, F are collinear in that order. Prove that if lines FP

and GQ intersect at M , then ∠MAC = 90◦.

Problem 6. Let an be the number of permutations (x1, x2, . . . , xn) of the numbers (1, 2, . . . , n)

such that the n ratios xk
k for 1 ≤ k ≤ n are all distinct. Prove that an is odd for all n ≥ 1.
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§1 USAMO 2018/1 (Titu Andreescu)

Problem 1 (USAMO 2018/1)

Let a, b, c be positive real numbers such that a+ b+ c = 4 3
√
abc. Prove that

2(ab+ bc+ ca) + 4 min(a2, b2, c2) ≥ a2 + b2 + c2.

Without loss of generality a ≤ b ≤ c, and by homogeneity let abc = 1, i.e. a+ b+ c = 4. Then

observe the following, where the first inequality follows from AM-GM:

4a+ 1
a ≥ 4

=⇒ a(a+ b+ c) + bc ≥ 4

=⇒ 4(a2 + ab+ bc+ ca) ≥ (a+ b+ c)2

=⇒ 2(ab+ bc+ ca) + 4a2 ≥ a2 + b2 + c2,

Remark. Equality holds when a = 1/2, bc = 2, b+ c = 7/2, i.e.

(a : b : c) =

(
1

2
:

7−
√

17

4
:

7 +
√

17

4

)

and permutations.
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§2 USAMO 2018/2 (Nikolai Nikolov, Titu Andreescu)

Problem 2 (USAMO 2018/2)

Find all functions f : R>0 → R>0 such that

f

(
x+

1

y

)
+ f

(
y +

1

z

)
+ f

(
z +

1

x

)
= 1

for all positive real numbers x, y, z with xyz = 1.

Consider the substitutions

g(x) := f

(
1

x
− 1

)
and h(x) := g

(
x+

1

3

)
− 1

3
.

We have the following properties:

g : (0, 1)→ (0, 1). g(x) + g(y) + g(z) = 1 for x+ y + z = 1.

h : (−1
3 ,

2
3)→ (−1

3 ,
2
3). h(x) + h(y) + h(z) = 0 for x+ y + z = 0.

I contend all valid h obey h(x) ≡ kx for some constant k. Such h obviously work when k ∈ [12 , 1]

(and no other k work), so we verify h is of this form. We proceed in four steps:

• By z = 0, we find h is odd.

• From above, we have h(x+ y) = −h(−x)− h(−y) = h(x) + h(y) for x, y ∈ (−1
6 ,

1
6), so by

bounded Cauchy, for some k we have h(x) = kx for x on that interval.

• For x ∈ (−1
3 ,

1
3), note h(x) = −2h(−1

2x) = 2h(12x) = kx.

• For x ∈ [13 ,
2
3), again note h(x) = −2h(−1

2x) = 2h(12x) = kx, as needed.

Unravelling the substitutions, the answer is

f(x) ≡ k

x+ 1
+

1− k
3

,

for each constant k ∈ [12 , 1].
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§3 USAMO 2018/3 (Ivan Borensco)

Problem 3 (USAMO 2018/3)

For a given integer n ≥ 2, let {a1, a2, . . . , am} be the set of positive integers less than n

that are relatively prime to n. Prove that if every prime that divides m also divides n,

then ak1 + ak2 + · · ·+ akm is divisible by m for every positive integer k.

For convenience, let A(n) be the set of positive integers less than n that are relatively prime to

n, so that |A(n)| = ϕ(n).

We begin with a lemma:

Lemma

For each n, j, and prime p, we have

νp

(
n∑
x=1

xj

)
≥ νp(n)− 1.

Proof. Let e = νp(n). Note the following:

n∑
x=1

xj ≡ n

pe

pe−1∑
x=0

xj (mod pe),

It will suffice to check νp

(∑pe−1
x=0 xj

)
≥ e− 1. Define

Tk :=
∑

νp(x)=k

xj , so that

pe−1∑
x=0

xj ≡
e∑

k=0

Tk (mod pe).

I contend νp(Tk) ≥ e− 1 for each k, which will suffice.

Fix k, and let g be a primitive root modulo pe−k. We have

Tk ≡ pkj
ϕ(pe−k)−1∑

i=0

gij ≡ gϕ(p
e−k)j − 1

gj − 1
pkj (mod pe).

There are two cases:

• If p− 1 | j, then by LTE,

νp

(
gϕ(p

e−k)j − 1

gj − 1

)
= νp

(
ϕ
(
pe−k

))
= e− k − 1,

so νp(Tk) = (e− k − 1) + kj ≥ e− 1.

• Otherwise gj − 1 contributes no powers of p, and

νp

(
gϕ(p

e−k)j − 1
)
≥ e− k

since gϕ(p
e−k)j ≡ 1 (mod pe−k), so νp(Tk) = (e− k) + kj ≥ e.

Thus the lemma is proven.

Now we induct on the number of (not necessarily distinct) prime factors of n. The base case

n = 2 is easy to check. Recall that n is always even, so we now proceed with the inductive step

n→ nq, where q is prime.
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Claim 1. If q | n and the problem statement holds for n, then it holds for nq.

Proof. Observe that

A(nq) =

q−1⋃
i=0

(A(n) + in).

It follows that

∑
a∈A(nq)

ak =

q−1∑
i=0

∑
a∈A(n)+in

ak =

q−1∑
i=0

∑
a∈A(n)

(a+ in)k

=
k∑
j=1

(k
j

)
nj

(
q−1∑
i=0

ij

) ∑
a∈A(n)

ak−j

+ q
∑

a∈A(n)

ak

Recall that ϕ(nq) = qϕ(n). This is divisible by ϕ(n) by the inductive hypothesis, and there are

evidently enough factors of q.

Claim 2. If q - n and the problem statement holds for n, then it holds for nq.

Proof. Instead, observe that

A(nq) =

q−1⋃
i=0

(A(n) + in) \ qA(n).

As computed above, we have

∑
a∈A(nq)

ak =
k∑
j=1

(k
j

)
nj

(
q−1∑
i=0

ij

) ∑
a∈A(n)

ak−j

− (qk − q) ∑
a∈A(n)

ak

Here ϕ(nq) = (q − 1)ϕ(n). As in the first claim, this is divisible by ϕ(n), so it suffices to verify

there are enough factors of p for p | q − 1.

The term (qk − q)
∑

a∈A(n) a
k is divisible by (q − 1)ϕ(n), so it remains to check each term of

the left summation. Indeed, the nj term contributes at least 1 factor of p, the
∑q−1

i=0 i
j term

contributes at least νp(q− 1)− 1 factors of p (by the lemma), and the
∑

a∈A(n) a
k−j contributes

νp(ϕ(n)) factors of p.

The inductive step follows.
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§4 USAMO 2018/4 (Ankan Bhattacharya)

Problem 4 (USAMO 2018/4)

Let p be a prime, and let a1, . . . , ap be integers. Show that there exists an integer k such

that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

For any two i < j, we have

ai + ik ≡ aj + jk (mod p) ⇐⇒ k ≡ (ai − aj)(j − i)−1 (mod p).

Hence, the number of (i, j, k) with i < j and ai + ik ≡ aj + jk (mod p) is precisely
(
p
2

)
.

By Pigeonhole, for some k there are at most p−1
2 pairs i < j with ai + ik ≡ aj + jk (mod p),

thus there are at least p+1
2 distinct residues among a1 + k, . . ., ap + pk.
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§5 USAMO 2018/5 (Kada Williams)

Problem 5 (USAMO 2018/5)

In convex cyclic quadrilateral ABCD, lines AC and BD intersect at E, lines AB and CD

intersect at F , and lines BC and DA intersect at G. Suppose that the circumcircle of

4ABE intersects line CB at B and P , and the circumcircle of 4ADE intersects line CD

at D and Q, where C, B, P , G and C, Q, D, F are collinear in that order. Prove that if

lines FP and GQ intersect at M , then ∠MAC = 90◦.

First solution, by Pappus’ Theorem This is a Miquel point problem with respect to quadri-

lateral BPDQ, as evidenced by the following three observations:

• CB · CP = CA · CE = CD · CQ, so BPDQ is cyclic.

• ]AEP = ]ABP = ]ABC = ]ADC = ]ADQ = ]AEQ, so E lies on PQ.

• It follows that A is the Miquel point of BDQP .

Let T = BQ ∩ DP ; by properties of the Miquel point ∠TAC = 90◦. By Pappus theorem on

BQGDPF , we have M , A, T collinear, so ∠MAC = 90◦ as well.

A

B

CD

E

F

G

P

Q

T

M

Second solution, by harmonic bundles First since

]BAC = ]BDC = ]EDQ = ]EAQ = ]CAQ,

AC bisects ∠BAQ and similarly ∠DAP . Let their common external angle bisectors intersect

BC and DC at X and Y respectively. Since −1 = (CX;PG) = (CY ;FQ), lines XY , FP , GQ

concur at M . It is clear that AM ⊥ AC.
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§6 USAMO 2018/6 (Richard Stong)

Problem 6 (USAMO 2018/6)

Let an be the number of permutations (x1, x2, . . . , xn) of the numbers (1, 2, . . . , n) such

that the n ratios xk
k for 1 ≤ k ≤ n are all distinct. Prove that an is odd for all n ≥ 1.

Say a permutation is good if xk
k are all distinct, and bad otherwise. The inverse permutation

(y1, . . . , yn) of (x1, . . . , xn) is such that yxk = k for all k.

Lemma 1 (Reduction to involutions)

A permutation is good if and only if its inverse permutation is good.

Proof. The proof is direct: if (x1, . . . , xn) is good and has inverse (y1, . . . , yn), then for each i,

j,
yi
i

=
yi
xyi
6= yj
xyj

=
yj
j
,

so (y1, . . . , yn) is good.

It suffices to show there is an odd number of good permutations equal to its own inverse —

i.e. involutions.

If an involution is good, then it has at most one fixed point. We consider these involutions

as maximal matchings on a graph of n vertices labeled 1, . . ., n. Label each edge i ∼ j, where

i < j, with the ratio i/j.

Lemma 2 (Total maximal matchings)

The number of maximal matchings of a graph with n distinguishable vertices is always odd.

Proof. Let the number of maximal matchings be f(n). I claim f(n) = (2dn/2e − 1)!!.

Indeed, f(2k) = (2k − 1)f(2k − 2) by selecting an arbitrary vertex and its neighbor, and

f(2k + 1) = (2k + 1)f(2k) by selecting its fixed point.

Lemma 3 (Main step)

There is an even number of bad maximal matchings.

Proof. Consider an undirected, nonsimple graph G on all bad maximal matchings. The key is

to consider the following adjacency:

For a matching x in G, select some (possibly zero) number of disjoint pairs of edges

a ∼ b, c ∼ d in x with the same label, and swap b, c. The result is another bad

maximal matching — draw an edge between it and x.

It is easy to verify the operation above is symmetric. I contend each vertex has even degree.

Let x be a vertex in G. For each λ, let mλ denote the number of edges a ∼ b in x with

a/b = λ, and let sλ be the number of ways to swap these mλ edges. By similar computation to

Lemma 2,

sλ =
∑
k≥0

(
mλ

2k

)
(2k − 1)!! ≡

∑
k≥0

(
mλ

2k

)
= 2mλ−1 (mod 2),
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which is even whenever nλ ≥ 2.

Finally degx is the product of sλ over all λ < 1. Since x is bad, nλ ≥ 2 for some λ, so degx

is even. Removing all self-loops, G is simple and each vertex of G now has odd degree, so G has

an even number of vertices.

In conclusion, the total number of maximal matchings is even, but the number of bad maximal

matchings is even, so the number of good maximal matchings is odd, the end.
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