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8§80 Problems

Problem 1. Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 4v/abc. Prove that
2(ab + be + ca) + 4min(a?, b?, ¢?) > a® + b + 2.

Problem 2. Find all functions f : Rvy — R<( such that

f<x+1>+f<y+1>+f<z+1>_1
Y z x

for all positive real numbers z, y, z with xyz = 1.

Problem 3. For a given integer n > 2, let {a1,aq,...,a,} be the set of positive integers less
than n that are relatively prime to n. Prove that if every prime that divides m also divides n,
then a’f + aé“ +---+aF, is divisible by m for every positive integer k.

Problem 4. Let p be a prime, and let aq, ..., a, be integers. Show that there exists an integer
k such that the numbers
a1+ k, as + 2k, ..., ap—i—pk

produce at least %p distinct remainders upon division by p.

Problem 5. In convex cyclic quadrilateral ABC' D, lines AC and BD intersect at F, lines AB
and CD intersect at F', and lines BC' and DA intersect at G. Suppose that the circumcircle of
AABE intersects line CB at B and P, and the circumcircle of AADE intersects line C'D at
D and @Q, where C, B, P, G and C, @, D, F' are collinear in that order. Prove that if lines F P
and GQ intersect at M, then ZMAC = 90°.

Problem 6. Let a,, be the number of permutations (z1, xo, ..., x,) of the numbers (1,2,...,n)
such that the n ratios %’“ for 1 < k < n are all distinct. Prove that a,, is odd for all n > 1.
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§1 USAMO 2018/1 (Titu Andreescu)

Problem 1 (USAMO 2018/1)
Let a, b, ¢ be positive real numbers such that a 4+ b+ ¢ = 4v/abc. Prove that

2(ab + be 4 ca) + 4min(a?,b?, ¢?) > a? + b* + .
Without loss of generality a < b < ¢, and by homogeneity let abc =1, i.e. a + b+ ¢ = 4. Then
observe the following, where the first inequality follows from AM-GM:

da+ < >4

= ala+b+c)+bc>4
= 4(a®> +ab+bc+ca) > (a+b+c)?
—> 2(ab+ be + ca) + 4a® > a® + b + 2,

Remark. Equality holds when a = 1/2, be =2, b+ c¢c=7/2, i.e.

):<1.7—\/ﬁ_7+\/ﬁ>

(a:b:c 5 1 7

and permutations.
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§2 USAMO 2018/2 (Nikolai Nikolov, Titu Andreescu)

Problem 2 (USAMO 2018/2)
Find all functions f : Rsg — R such that

f<w+1>+f<y+1)+f<z+1>:1
Y z T

for all positive real numbers x, y, z with xyz = 1.

Consider the substitutions

o(z) = f (; - 1> and  h(z) = g <x + ;) _ %

We have the following properties:

—~

g:(0,1) = (0,1).  g(x)+g(y)+g(z)=1 for z+y+2z=1
he(—5,2)—= (-1, 2). h(z)+h(y) + h(z) =0 for z+y+2z=0.

I contend all valid h obey h(z) = kx for some constant k. Such h obviously work when k € [%, 1]
(and no other k work), so we verify h is of this form. We proceed in four steps:

e By 2z =0, we find h is odd.
e From above, we have h(z + y) = —h(—z) — h(—y) = h(z) + h(y) for z,y € (—%,3), so by
bounded Cauchy, for some k& we have h(z) = kx for = on that interval.
e For z € (—1,1), note h(z) = —2h(—1z) = 2h(5z) = ka.
e For z € [£, 2), again note h(z) = —2h(—32) = 2h(3z) = kz, as needed.
Unravelling the substitutions, the answer is

k 1-k

f@) =g+

for each constant k € [3, 1].
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§3 USAMO 2018/3 (lvan Borensco)

Problem 3 (USAMO 2018/3)

For a given integer n > 2, let {a1,a2,...,an} be the set of positive integers less than n
that are relatively prime to n. Prove that if every prime that divides m also divides n,
then a]f + ag + .-+ aF, is divisible by m for every positive integer k.

For convenience, let A(n) be the set of positive integers less than n that are relatively prime to
n, so that [A(n)| = ¢(n).
We begin with a lemma:

Lemma

For each n, j, and prime p, we have

Proof. Let e = vp(n). Note the following:
Zm] = s Z ) (mod p°),
=1 =0

It will suffice to check v, ( 5;01 xd ) > e — 1. Define

pe—1 e
Ty = Z 27, so that Z 2 = ZTk (mod p°).
=0 k=0

vp(x)=k
I contend v,(T};) > e — 1 for each k, which will suffice.
Fix k, and let g be a primitive root modulo p~*. We have

ppeh)-1 g<p(p6*’“)j 1

Te=p" > g¥ prp P (mod p°).

There are two cases:

e If p—1|j, then by LTE,

(5 (o) = e

sovp(Ty) =(e—k—1)+kj>e—1.
e Otherwise ¢/ — 1 contributes no powers of p, and
vy <gso(pe*’“)j _ 1) >e—Fk
since g?P )i =1 (mod p°*), so vp(Ty) = (e — k) + kj > e.
Thus the lemma, is proven. ]

Now we induct on the number of (not necessarily distinct) prime factors of n. The base case
n = 2 is easy to check. Recall that n is always even, so we now proceed with the inductive step
n — ngq, where ¢ is prime.
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Claim 1. If ¢ | n and the problem statement holds for n, then it holds for ng.

Proof. Observe that

q—1
A(ng) = U (A(n) +in).
i=0
It follows that
q—1 q—1
ak = Z ak = (a+in)k
a€A(nq) 1=0 a€A(n)+in 1=0 a€A(n)
L A
=> ()nf <227> )| +q > dF
Jj=1 J 1=0 a€A(n) a€A(n)

Recall that ¢(ng) = qe(n). This is divisible by ¢(n) by the inductive hypothesis, and there are
evidently enough factors of ¢. O

Claim 2. If ¢ ¥ n and the problem statement holds for n, then it holds for ng.

Proof. Instead, observe that

q—1

A(ng) = |J(A(n) + in) \ gA(n).

1=0

As computed above, we have

£ -£[er(E) (5] 05

a€A(ng) =0 a€A(n) acA(n)

Here ¢p(ng) = (¢ — 1)p(n). As in the first claim, this is divisible by ¢(n), so it suffices to verify
there are enough factors of p for p | ¢ — 1.

The term (¢" — q) 2 acA(m) a” is divisible by (¢ — 1)p(n), so it remains to check each term of
the left summation. Indeed, the n/ term contributes at least 1 factor of p, the g;é 7 term
contributes at least 1(q —1) — 1 factors of p (by the lemma), and the _ ¢ 4, a*=7 contributes
vp(p(n)) factors of p.

The inductive step follows. O
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8§84 USAMO 2018/4 (Ankan Bhattacharya)

Problem 4 (USAMO 2018/4)

Let p be a prime, and let ay,...,a, be integers. Show that there exists an integer k£ such
that the numbers
ar +k, ag + 2k, ..., ap +pk

produce at least 1p distinct remainders upon division by p.
2

For any two ¢ < j, we have

ai +ik = a; + jk (mod p) <= k= (a; —a;j)(j —i)~"

(mod p).
Hence, the number of (i, j, k) with ¢ < j and a; + ik = a;j + jk (mod p) is precisely (5).

By Pigeonhole, for some k there are at most p%l pairs ¢ < j with a; + ik = a; + jk (mod p),
thus there are at least I%l distinct residues among a1 + k, ..., a, + pk.
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8§56 USAMO 2018/5 (Kada Williams)

Problem 5 (USAMO 2018/5)

In convex cyclic quadrilateral ABC' D, lines AC' and BD intersect at F, lines AB and C'D
intersect at F', and lines BC' and DA intersect at G. Suppose that the circumcircle of
AABE intersects line CB at B and P, and the circumcircle of AADE intersects line C'D
at D and @, where C', B, P, G and C, Q, D, F are collinear in that order. Prove that if
lines F'P and GQ intersect at M, then ZM AC = 90°.

First solution, by Pappus’ Theorem This is a Miquel point problem with respect to quadri-
lateral BPD@), as evidenced by the following three observations:

e CB-CP=CA-CE=CD-CQ, so BPDQ is cyclic.

o {AEP = {ABP = LABC = £ ADC = £ADQ = LAEQ, so E lies on PQ.

o [t follows that A is the Miquel point of BDQP.

Let T = BQ N DP; by properties of the Miquel point ZTAC = 90°. By Pappus theorem on
BQGDPEF, we have M, A, T collinear, so ZMAC = 90° as well.

Second solution, by harmonic bundles First since
ABAC = {BDC = AEDQ = LFEAQ = LCAQ,

AC bisects ZBAQ and similarly ZDAP. Let their common external angle bisectors intersect
BC and DC at X and Y respectively. Since —1 = (CX; PG) = (CY; FQ), lines XY, FP, GQ
concur at M. It is clear that AM 1 AC.
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§6 USAMO 2018/6 (Richard Stong)

Problem 6 (USAMO 2018/6)

Let a, be the number of permutations (z1,x2,...,2,) of the numbers (1,2,...,n) such
that the n ratios % for 1 <k <n are all distinct. Prove that a,, is odd for all n > 1.

Say a permutation is good if % are all distinct, and bad otherwise. The inverse permutation
(Y1,.--,yn) of (z1,...,2y) is such that y,, =k for all k.

Lemma 1 (Reduction to involutions)

A permutation is good if and only if its inverse permutation is good.

Proof. The proof is direct: if (x1,...,x,) is good and has inverse (yi,...,¥yn), then for each 1,
4 Yi Yi Yj Yj

T
s0 (Y1, ...,Yyn) is good. O]

It suffices to show there is an odd number of good permutations equal to its own inverse —
i.e. involutions.

If an involution is good, then it has at most one fixed point. We consider these involutions
as maximal matchings on a graph of n vertices labeled 1, ..., n. Label each edge i ~ j, where
i < j, with the ratio i/j.

Lemma 2 (Total maximal matchings)

The number of maximal matchings of a graph with n distinguishable vertices is always odd.

Proof. Let the number of maximal matchings be f(n). I claim f(n) = (2[n/2] — 1!l
Indeed, f(2k) = (2k — 1)f(2k — 2) by selecting an arbitrary vertex and its neighbor, and
f(2k+1) = (2k + 1) f(2k) by selecting its fixed point. O

Lemma 3 (Main step)

There is an even number of bad maximal matchings.

Proof. Consider an undirected, nonsimple graph G on all bad maximal matchings. The key is
to consider the following adjacency:

For a matching x in G, select some (possibly zero) number of disjoint pairs of edges
a ~ b, ¢c ~ d in x with the same label, and swap b, ¢. The result is another bad
maximal matching — draw an edge between it and x.

It is easy to verify the operation above is symmetric. I contend each vertex has even degree.
Let x be a vertex in G. For each A, let m) denote the number of edges a ~ b in x with
a/b= A, and let s) be the number of ways to swap these m) edges. By similar computation to

A=Y (?2) 2k-1u=3" @2) = 9™~ (mod 2),

k>0 k>0

Lemma 2,
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which is even whenever ny > 2.

Finally degx is the product of sy over all A < 1. Since x is bad, n) > 2 for some )\, so degx
is even. Removing all self-loops, G is simple and each vertex of G now has odd degree, so G has
an even number of vertices. O

In conclusion, the total number of maximal matchings is even, but the number of bad maximal
matchings is even, so the number of good maximal matchings is odd, the end.
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