USAMO 2017

Compiled by Eric Shen

Last updated June 12, 2020

Contents

0	Problems	2
1	USAMO 2017/1 (Gregory Galperin)	3
2	USAMO 2017/2 (Maria Monks)	4
3	USAMO 2017/3 (Evan Chen)	6
4	USAMO 2017/4 (Maria Monks)	7
5	USAMO 2017/5 (Ricky Liu)	9
6	USAMO 2017/6 (Titu Andreescu)	11

§0 Problems

Problem 1. Prove that there exist infinitely many pairs of relatively prime positive integers a > 1 and b > 1 such that $a^b + b^a$ is divisible by a + b.

Problem 2. Let m_1, m_2, \ldots, m_n be n (not necessarily distinct) positive integers. For any sequence of integers $A = (a_1, \ldots, a_n)$ and any permutation $w = (w_1, \ldots, w_n)$ of (m_1, \ldots, m_n) , define an A-inversion of ω to be a pair of indices i, j with i < j for which one of the following conditions holds:

- $a_i \geq w_i > w_j$,
- $w_j > a_i \ge w_i$, or
- $w_i > w_j > a_i$.

Show that, for any two sequences of integers $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$, and for any positive integer k, the number of permutations of (m_1, \ldots, m_n) having exactly k A-inversions is equal to the number of permutations of (m_1, \ldots, m_n) having exactly k B-inversions.

Problem 3. Let ABC be a scalene triangle with circumcircle Ω and incenter I. Ray AI meets \overline{BC} at D and meets Ω again at M; the circle with diameter \overline{DM} cuts Ω again at K. Lines MK and BC meet at S, and N is the midpoint of \overline{IS} . The circumcircles of $\triangle KID$ and $\triangle MAN$ intersect at points L_1 and L_2 . Prove that Ω passes through the midpoint of either $\overline{IL_1}$ or $\overline{IL_2}$.

Problem 4. Let P_1, P_2, \ldots, P_{2n} be 2n distinct points on the unit circle $x^2 + y^2 = 1$, none of which is (1,0). Each point is colored either red of blue, with exactly n red points and n blue points. Let R_1, R_2, \ldots, R_n be any ordering of the red points. Let B_1 be the nearest blue point to R_1 traveling counterclockwise around the circle starting from R_1 . Then let R_2 be the nearest of the remaining blue points to R_2 traveling counterclockwise around the circle from R_2 , and so on, until we have labeled all of the blue points R_1, \ldots, R_n .

Show that the number of counterclockwise arcs of the form $R_i \to B_i$ that contain the point (1,0) is independent of the way we chose the ordering R_1, \ldots, R_n of the red points.

Problem 5. Find all real numbers c > 0 such that there exists a labeling of the lattice points $(x, y) \in \mathbb{Z}^2$ with positive integers for which:

- only finitely many distinct labels occur, and
- for each label i, the distance between any two points labeled i is at least c^i .

Problem 6. Find the minimum possible value of

$$\frac{a}{b^3+4} + \frac{b}{c^3+4} + \frac{c}{d^3+4} + \frac{d}{a^3+4}$$

given that a, b, c, d are nonnegative real numbers such that a + b + c + d = 4.

§1 USAMO 2017/1 (Gregory Galperin)

Problem 1 (USAMO 2017/1)

Prove that there exist infinitely many pairs of relatively prime positive integers a > 1 and b > 1 such that $a^b + b^a$ is divisible by a + b.

For every k, the ordered pair (2k-1,2k+1) works. Both elements are relatively prime. The condition $a+b \mid a^b+b^a$ may be checked via binomial theorem as follows:

$$(2k-1)^{2k+1} \equiv -1 + 2k(2k+1) \pmod{4k};$$

 $(2k+1)^{2k-1} \equiv -1 + 2k(2k-1) \pmod{4k}.$

Thus
$$(2k-1)^{2k+1} + (2k+1)^{2k-1} \equiv 0 \pmod{4k}$$
.

§2 USAMO 2017/2 (Maria Monks)

Problem 2 (USAMO 2017/2)

Let m_1, m_2, \ldots, m_n be n (not necessarily distinct) positive integers. For any sequence of integers $A = (a_1, \ldots, a_n)$ and any permutation $w = (w_1, \ldots, w_n)$ of (m_1, \ldots, m_n) , define an A-inversion of ω to be a pair of indices i, j with i < j for which one of the following conditions holds:

- $a_i \ge w_i > w_j$,
- $w_i > a_i \ge w_i$, or
- $w_i > w_j > a_i$.

Show that, for any two sequences of integers $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$, and for any positive integer k, the number of permutations of (m_1, \ldots, m_n) having exactly k A-inversions is equal to the number of permutations of (m_1, \ldots, m_n) having exactly k B-inversions.

We will prove for any A that the number of permutations having exactly k A-inversions equals the number of permutations having exactly k inversions, where an inversion is a pair of indices i, j with i < j and $a_i > a_j$.

The proof proceeds in two main steps:

- (i) Prove the problem for $m_1 < \cdots < m_n$ (all distinct).
- (ii) Extend to all $m_1 \leq \cdots \leq m_n$ (not necessarily distinct).

First, combinatorial proof of (i) Let $Inv_A(i)$ be the number of j > i such that (w_i, w_j) is an A-inversion. We will construct a bijection between (w_1, \ldots, w_n) with k A-inversions and (p_1, \ldots, p_n) with k inversions. The process is as follows:

For each i = n, ..., 1, write the variable p_i on the board such that p_i is the $(\text{Inv}_A(i) + 1)$ th element from the left. (For instance, we first write p_n on the board; then, if $\text{Inv}_A(n-1) = 0$, we write p_{n-1} to the left of p_n , and if $\text{Inv}_A(n-1) = 1$, we write p_{n-1} to the right of p_n .) Then set the *i*th variable from the left equal to m_i . (For instance, if the board reads p_3 , p_1 , p_2 , then we have $p_3 = m_1$, $p_1 = m_2$, $p_2 = m_3$.)

By design, for each i, the number of j < i with $p_i < p_j$ equals $Inv_A(i)$. Hence the number of inversions of (p_1, \ldots, p_n) equals the number of A-inversions of (w_1, \ldots, w_n) .

This operation is clearly injective, thus it is a bijection, and the proof is complete.

Second, inductive proof of (i), with generating functions We claim via induction on n that the generating function for the number of permutations having k A-inversions is always

$$n!_x = 1 \cdot (1+x) \cdot (1+x+x^2) \cdots (1+x+\cdots+x^{n-1}).$$

(Here, the number of permutations having k A-inversions is the coefficient of x^k .)

The base case n = 1 is clear. Assume the claim is true for n - 1, and let $m_k \le a_1 < m_{k+1}$ (with $m_0 = -\infty$, $m_{n+1} = \infty$).

• For $i \geq 0$, if $w_1 = m_{k-i}$, then there are n - i - 1 inversions with w_1 . (Namely (w_1, w_j) with j < k - i or $j \geq k + 1$.) Thus this case contributes a $x^{n-i-1}(n-1)!_x$ term.

• For i > 0, if $w_i = m_{k+i}$, then there are i - 1 inversions with w_1 . (Namely (w_1, w_j) , with $k + 1 \le j < k + i$.) Thus this case contributes a $x^i(n-1)!_x$ term.

The new generating function is then

$$n!_x = (n-1)!_x \left(\sum_{i=0}^{k-1} x^{n-i-1} + \sum_{i=1}^{n-k} x^{i-1} \right) = (n-1)!_x (1+x+\cdots+x_{n-1}),$$

as needed.

Proof of (ii), with generating functions What follows is really a combinatorial argument, but expressing it without generating functions is a huge pain.

We reuse notation from the generating functions proof of (i), where $n!_x$ is the generating function for the number of permutations of (m_1, \ldots, m_n) having k A-inversions. (It is not necessary to know the explicit form for $n!_q$ that we used above.)

Let the multiset $\{m_1, \ldots, m_n\}$ contain k distinct integers $\lambda_1 < \cdots < \lambda_k$ with multiplicity c_1, \ldots, c_k respectively. Let F(x) be the generating function for the number of permutations of (m_1, \ldots, m_n) having k A-inversions, with multiplicity (so F(1) = n!).

Claim. The explicit form for F(x) is

$$F(x) = n!_x \cdot \frac{c_1! c_2! \cdots c_k!}{c_1!_x c_2!_x \cdots c_k!_x}.$$

Proof. Slightly perturb each m_i , replacing m_i with $m_i + i\varepsilon$, where $0 < \varepsilon \ll 1/n$. Then the generating function is $n!_x$. (Obviously both proofs to (i) still hold when (m_1, \ldots, m_n) are real numbers.)

Next we undo each perturbation. For i = 1, ..., k, I claim the excessive ordering of the c_i instances of λ_i contribute an overcount of $c_i!_x/c_i!$. Indeed, there is a factor of $c_i!_x$ that should instead be $c_i!_x \cdot x^0$, since there are no inversions between equivalent elements of the permutation.

Undoing the overcounts, the claim then follows.

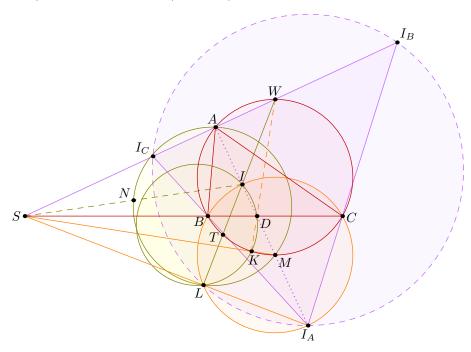
The x^k coefficient of F(x) is the number of permutations having k A-inversions. This is independent of A, so we are done.

§3 USAMO 2017/3 (Evan Chen)

Problem 3 (USAMO 2017/3)

Let ABC be a scalene triangle with circumcircle Ω and incenter I. Ray AI meets \overline{BC} at D and meets Ω again at M; the circle with diameter \overline{DM} cuts Ω again at K. Lines MK and BC meet at S, and N is the midpoint of \overline{IS} . The circumcircles of $\triangle KID$ and $\triangle MAN$ intersect at points L_1 and L_2 . Prove that Ω passes through the midpoint of either $\overline{IL_1}$ or $\overline{IL_2}$.

The obvious first step: let W be the midpoint of arc BAC, so W, D, K collinear. By AB/AC = DB/DC = KB/KC, we have -1 = (AK; BC), and thus \overline{AS} is the external bisector of $\angle BAC$.



To prove the problem, we will describe a point L with the three required properties: (i) the midpoint of \overline{IL} lies on (ABC), (ii) L lies on (MAN), and (iii) L lies on (KID).

Let \overline{WI} intersect (ABC) again at T, and let L be the reflection of I over T. By design L obeys condition (i).

To prove condition (ii), I contend M, A, N, L lie on the nine-point circle of $\triangle I_ASW$. Note that $\angle ILI_A = \angle ITM = 90^\circ$, so $\overline{I_AA} \perp \overline{WS}$ and $\overline{WL} \perp \overline{I_AS}$. It follows that I is the orthocenter of $\triangle I_ASW$. Then the hypothesis in (ii) becomes clear.

Finally to verify (iii), recall that \overline{WB} is tangent to (BIC), thus $WI \cdot WL = WB^2 = WD \cdot WK$ by Shooting lemma. This completes the proof.

Remark. This is really an orthocenter problem in terms of $\triangle I_A I_B I_C$, with orthic triangle $\triangle ABC$. The desired point L is the so-called "Queue point" of $\triangle I_A I_B I_C$.

§4 USAMO 2017/4 (Maria Monks)

Problem 4 (USAMO 2017/4)

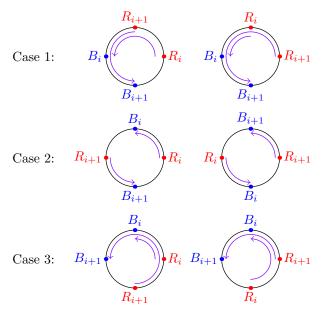
Let P_1, P_2, \ldots, P_{2n} be 2n distinct points on the unit circle $x^2 + y^2 = 1$, none of which is (1,0). Each point is colored either red of blue, with exactly n red points and n blue points. Let R_1, R_2, \ldots, R_n be any ordering of the red points. Let B_1 be the nearest blue point to R_1 traveling counterclockwise around the circle starting from R_1 . Then let R_2 be the nearest of the remaining blue points to R_2 traveling counterclockwise around the circle from R_2 , and so on, until we have labeled all of the blue points R_1, \ldots, R_n .

Show that the number of counterclockwise arcs of the form $R_i \to B_i$ that contain the point (1,0) is independent of the way we chose the ordering R_1, \ldots, R_n of the red points.

First solution, by swapping adjacent points For any $1 \le i < n$, we will consider what happens when we swap the red points R_i , R_{i+1} .

Claim. If we swap R_i , R_{i+1} , then the new arcs R_iB_i , $R_{i+1}B_{i+1}$ will cover the same set of points with multiplicity.

Proof. Delete all the other points. There are three possible ways to orient the four remaining points R_i , R_{i+1} , B_i , B_{i+1} .



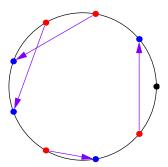
Observe that in all three cases above, the claim holds.

It suffices to check that for every permutation of (1, ..., n), there is a sequence of moves in which we swap adjacent elements that results in the original ordering (1, ..., n). This can be done via bubble sort, so we are done.

Second solution, by deleting a chord Start from (1,0), and progress counterclockwise around the unit circle. Keep a running counter x, beginning at 0. Increment it whenever we cross a blue point, and decrement it whenever we cross a red point.

Say an arc R_iB_i is good if it contains (1,0), and bad otherwise. The following claim is independent of the labeling of the red points, so it will suffice:

Claim. The number of good arcs is the maximum value of x.



Reverse induct on n by deleting R_1 and B_1 . The base case n = 1 is obvious. First note that arc R_1B_1 contains no blue points. There are two cases to consider:

- Suppose $\widehat{R_1B_1}$ is bad. The maximum value of x occurs immediately after crossing a blue point, so there is no change to x.
- Suppose $\widehat{R_1B_1}$ is good. There are no blue points between (1,0) and B_1 , nor are there any between R_1 and (1,0), so the maximum value of x occurs on the counterclockwise arc B_1R_1 . Thus deleting R_1 and B_1 decreases x by 1.

This proves the claim.

§5 USAMO 2017/5 (Ricky Liu)

Problem 5 (USAMO 2017/5)

Find all real numbers c > 0 such that there exists a labeling of the lattice points $(x, y) \in \mathbb{Z}^2$ with positive integers for which:

- only finitely many distinct labels occur, and
- for each label i, the distance between any two points labeled i is at least c^i .

The answer is $c < \sqrt{2}$. We will describe a labeling for each $c < \sqrt{2}$, and then show $c = \sqrt{2}$ (and hence $c \ge \sqrt{2}$) does not work.

Construction for $c < \sqrt{2}$: Suppose that k is the smallest integer such that $c^k < (\sqrt{2})^{k-1}$. Toss on the complex plane, and denote

$$S_1 = \{z : \text{Re}(z) + \text{Im}(z) \equiv 1 \pmod{2}\}.$$

Now, let

$$S_t = \{z(1+i) : z \in S_{t-1}\}$$

for all 1 < t < k. Label all points in S_t the label t, and label the rest of the points the label k. It is easy to see that each point is in exactly one of S_1, S_2, \ldots, S_k , so this labeling works.

Proof for $c = \sqrt{2}$: We will show that no labeling exists. First we prove a lemma.

Lemma

It is impossible to place four points in the interior of a unit square such that any two points are a distance of at least 1 apart.

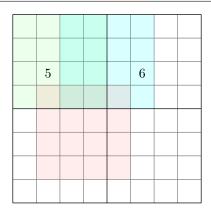
Proof. Consider any four points in the interior of the unit square, and let O be the center of the unit square. By the Pigeonhole Principle there are two points P and Q such that $\angle POQ \le 90^{\circ}$. Then $PQ^2 \le OP^2 + OQ^2 < 1$, as desired.

Next we claim the following, which obviously implies the desired result.

Claim. Any square of size $2^n \times 2^n$ must contain a cell with label greater than 2n.

We induct on n, with base case n = 1 obvious. Now suppose the claim is true for n - 1, and assume for contradiction that it is possible to cells the points of a $2^n \times 2^n$ square such that no label exceeds 2n.

By the lemma, there are at most three cells labeled 2n; hence without loss of generality the top-left $2^{n-1} \times 2^{n-1}$ grid does not contain a cell labeled 2n. By the inductive hypothesis, it must contain a cell labeled 2n-1.



Consider the grid of dimensions $2^{n-1} \times 2^{n-1}$ directly to the right of the point labeled 2n-1, with top row coinciding with the top row of the $2^n \times 2^n$ grid. Clearly this grid cannot contain a 2n-1, so it contains a 2n; furthermore this 2n is in the top-right $2^{n-1} \times 2^{n-1}$ grid. Then it is easy to construct a grid of dimensions $2^{n-1} \times 2^{n-1}$ orthogonally adjacent to the cell labeled 2n-1 and either orthogonally or diagonally adjacent to the square labeled 2n. This grid contains neither a 2n-1 nor a 2n, contradiction.

§6 USAMO 2017/6 (Titu Andreescu)

Problem 6 (USAMO 2017/6)

Find the minimum possible value of

$$\frac{a}{b^3+4} + \frac{b}{c^3+4} + \frac{c}{d^3+4} + \frac{d}{a^3+4}$$

given that a, b, c, d are nonnegative real numbers such that a + b + c + d = 4.

The key is the tangent-line approximation

$$\frac{x^3}{x^3+4} \le \frac{x}{3} \iff 0 \le x(x+1)(x-2)^2.$$

By AM-GM, $ab + bc + cd + da = (a+c)(b+d) \le 4$, so

$$\sum_{\text{cyc}} \frac{a}{b^3 + 4} = \sum_{\text{cyc}} \frac{a}{4} \left(1 - \frac{b^3}{b^3 + 4} \right) \ge 1 - \sum_{\text{cyc}} \frac{ab}{12} \ge \frac{2}{3},$$

with equality achieved by (a, b, c, d) = (2, 2, 0, 0).