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8§80 Problems

Problem 1. Prove that there exist infinitely many pairs of relatively prime positive integers
a > 1 and b > 1 such that a® + b is divisible by a + b.

Problem 2. Let mj, ma, ..., m, be n (not necessarily distinct) positive integers. For any
sequence of integers A = (aq,...,a,) and any permutation w = (w1, ...,wy) of (my,...,my),
define an A-inversion of w to be a pair of indices 4, 7 with ¢ < j for which one of the following
conditions holds:

° a; > w; > wj,

e w; > a; = wj, Or

o w; > wj > aj.

Show that, for any two sequences of integers A = (a1, ...,a,) and B = (b1,...,by,), and for any
positive integer k, the number of permutations of (myq,...,m;) having exactly k A-inversions
is equal to the number of permutations of (m1, ..., m,) having exactly k B-inversions.

Problem 3. Let ABC be a scalene triangle with circumcircle 2 and incenter I. Ray Al meets
BC at D and meets € again at M; the circle with diameter DM cuts € again at K. Lines M K
and BC meet at S, and N is the midpoint of IS. The circumcircles of AKID and AMAN
intersect at points L1 and Ls. Prove that 2 passes through the midpoint of either IL; or ILs.

Problem 4. Let P, P,, ..., P, be 2n distinct points on the unit circle 22 4+ y? = 1, none of
which is (1,0). Each point is colored either red of blue, with exactly n red points and n blue
points. Let Ri, Ro, ..., R, be any ordering of the red points. Let By be the nearest blue point
to Ry traveling counterclockwise around the circle starting from R;. Then let By be the nearest
of the remaining blue points to Ry traveling counterclockwise around the circle from Rg, and
so on, until we have labeled all of the blue points By, ..., B,.

Show that the number of counterclockwise arcs of the form R; — B; that contain the point
(1,0) is independent of the way we chose the ordering Ry, ..., R, of the red points.

Problem 5. Find all real numbers ¢ > 0 such that there exists a labeling of the lattice points
(x,y) € Z* with positive integers for which:

e only finitely many distinct labels occur, and
e for each label 4, the distance between any two points labeled i is at least ¢’.
Problem 6. Find the minimum possible value of

a n b N c n d
B+4d 3S+4 B+4 a3+4°

given that a, b, ¢, d are nonnegative real numbers such that a + b+ c+ d = 4.
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§1 USAMO 2017/1 (Gregory Galperin)

Problem 1 (USAMO 2017/1)

Prove that there exist infinitely many pairs of relatively prime positive integers a > 1 and
b > 1 such that a® + b? is divisible by a + b.

For every k, the ordered pair (2k — 1,2k + 1) works. Both elements are relatively prime. The
condition a + b | a® 4 b* may be checked via binomial theorem as follows:

(2k — 1)?** = 1 4 2k(2k +1) (mod 4k);
(2k +1)*"1 = —1 4+ 2k(2k —1) (mod 4k).

Thus (2k — 1)%+1 + (2k + 1)?*~1 =0 (mod 4k).
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§2 USAMO 2017/2 (Maria Monks)

Problem 2 (USAMO 2017/2)
Let m1, ma, ..., my be n (not necessarily distinct) positive integers. For any sequence of
integers A = (aq,...,ay,) and any permutation w = (wi,...,wy,) of (m1,...,m,), define
an A-inversion of w to be a pair of indices 7, j with ¢ < j for which one of the following
conditions holds:

® a; > w; > wy,

® w; > a; = w;, Or

o Wi > wWj > Q.

Show that, for any two sequences of integers A = (ay,...,a,) and B = (b1,...,b,), and
for any positive integer k, the number of permutations of (mj,...,m,) having exactly
k A-inversions is equal to the number of permutations of (mq,..., m,) having exactly k

B-inversions.

We will prove for any A that the number of permutations having exactly k A-inversions equals
the number of permutations having exactly k inversions, where an inversion is a pair of indices
i, 7 with 4« < j and a; > a;.

The proof proceeds in two main steps:

(i) Prove the problem for m; < --- < my, (all distinct).

(ii) Extend to all m; <--- < m,, (not necessarily distinct).

First, combinatorial proof of (i) Let Inv4(i) be the number of j > i such that (w;,w;) is
an A-inversion. We will construct a bijection between (wi,...,wy,) with k£ A-inversions and
(p1,--.,pn) with k inversions. The process is as follows:

For each i = n, ..., 1, write the variable p; on the board such that p; is the (Inv 4 (i) +
1)th element from the left. (For instance, we first write p, on the board; then, if
Inva(n — 1) = 0, we write p,—1 to the left of p,, and if Inva(n — 1) = 1, we write
Pn—1 to the right of p,.) Then set the ith variable from the left equal to m;. (For
instance, if the board reads ps, p1, p2, then we have ps = mq, p1 = ma, po = ms.)

By design, for each ¢, the number of j < ¢ with p; < p; equals Inv4(i). Hence the number of
inversions of (p1,...,pn) equals the number of A-inversions of (wy, ..., wy).
This operation is clearly injective, thus it is a bijection, and the proof is complete.

Second, inductive proof of (i), with generating functions We claim via induction on n that
the generating function for the number of permutations having k A-inversions is always

(Here, the number of permutations having k A-inversions is the coefficient of z¥.)
The base case n = 1 is clear. Assume the claim is true for n — 1, and let my < a1 < Mg
(with mg = —o0, my41 = 00).

e For ¢ > 0, if wy = my_;, then there are n — i — 1 inversions with w;. (Namely (w1, w;)
with j < k —i or j > k + 1.) Thus this case contributes a 2" ~*~!(n — 1)!, term.
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e For i > 0, if w; = my4,, then there are ¢ — 1 inversions with wy. (Namely (wq,w;), with
k+1<j<k+i.) Thus this case contributes a z'(n — 1), term.

The new generating function is then

nly = (n—1)! (Zx"ll—i-zyc ) =D Q4+x+ - +zp-1),

as needed.

Proof of (ii), with generating functions What follows is really a combinatorial argument, but
expressing it without generating functions is a huge pain.

We reuse notation from the generating functions proof of (i), where n!, is the generating
function for the number of permutations of (mq,...,m,) having k& A-inversions. (It is not
necessary to know the explicit form for n!, that we used above.)

Let the multiset {m1,...,m,} contain k distinct integers A\; < --- < Ay with multiplicity
1, ..., cx respectively. Let F'(x) be the generating function for the number of permutations of
(m1,...,my) having k A-inversions, with multiplicity (so F'(1) = n!).

Claim. The explicit form for F(z) is

crleg! !

Gy ° ° ° Gl

F(z) =nl,

Proof. Slightly perturb each m;, replacing m; with m; + ie, where 0 < ¢ < 1/n. Then the

generating function is n!;. (Obviously both proofs to (i) still hold when (my, ..., m;) are real
numbers.)
Next we undo each perturbation. For ¢ = 1,...,k, I claim the excessive ordering of the ¢;

instances of \; contribute an overcount of ¢;!;/¢;!. Indeed, there is a factor of ¢;!; that should
instead be ¢;!- 20, since there are no inversions between equivalent elements of the permutation.
Undoing the overcounts, the claim then follows. O

The z* coefficient of F(z) is the number of permutations having k A-inversions. This is
independent of A, so we are done.
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§3 USAMO 2017/3 (Evan Chen)

Problem 3 (USAMO 2017/3)

Let ABC be a scalene triangle with circumcircle  and incenter I. Ray AI meets BC at D
and meets  again at M; the circle with diameter DM cuts  again at K. Lines M K and
BC meet at S, and N is the midpoint of IS. The circumcircles of AKID and AMAN
intersect at points L; and L. Prove that ) passes through the midpoint of either IL; or
I1L,.

The obvious first step: let W be the midpoint of arc BAC, so W, D, K collinear. By AB/AC =
DB/DC = KB/KC, we have —1 = (AK; BC), and thus AS is the external bisector of ZBAC.

To prove the problem, we will describe a point L with the three required properties: (i) the
midpoint of IL lies on (ABC), (ii) L lies on (M AN), and (iii) L lies on (KID).

Let W1 intersect (ABC) again at T, and let L be the reflection of I over T. By design L
obeys condition (i).

To prove condition (ii), I contend M, A, N, L lie on the nine-point circle of AT4SW. Note
that ZILI4 = ZITM = 90°,s0 I4A L WS and WL L I45. It follows that I is the orthocenter
of AI,SW. Then the hypothesis in (ii) becomes clear.

Finally to verify (iii), recall that W B is tangent to (BIC), thus WI-WL = WB? = WD- WK
by Shooting lemma. This completes the proof.

Remark. This is really an orthocenter problem in terms of Al4Iglc, with orthic triangle AABC.
The desired point L is the so-called “Queue point” of AlaIglc.
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8§84 USAMO 2017/4 (Maria Monks)

Problem 4 (USAMO 2017/4)

Let Py, P, ..., P, be 2n distinct points on the unit circle #2 4+ 2 = 1, none of which
is (1,0). Each point is colored either red of blue, with exactly n red points and n blue
points. Let Ry, Ro, ..., R, be any ordering of the red points. Let B; be the nearest blue
point to Ry traveling counterclockwise around the circle starting from R;. Then let By be
the nearest of the remaining blue points to Ry traveling counterclockwise around the circle
from R, and so on, until we have labeled all of the blue points By, ..., B,.

Show that the number of counterclockwise arcs of the form R; — B; that contain the
point (1,0) is independent of the way we chose the ordering Ry, ..., R, of the red points.

First solution, by swapping adjacent points For any 1 < i < n, we will consider what happens
when we swap the red points R;, R;1.

Claim. If we swap R;, R;11, then the new arcs R;B;, R;1+1B;+1 will cover the same set of

points with multiplicity.

Proof. Delete all the other points. There are three possible ways to orient the four remaining
points R;, Ri11, Bi, Bit1.

Rt R;
Case 1: Bz R, Bl Ri+]
Bi1 Bia
B; By
Case 2: Ri+l Rl Ri Rﬂ,l
Bij1 B;
B; B;
Case 3: Biy1 R; Bit1 Ritq
Ritq R;
Observe that in all three cases above, the claim holds. ]
It suffices to check that for every permutation of (1,...,n), there is a sequence of moves in
which we swap adjacent elements that results in the original ordering (1,...,n). This can be

done via bubble sort, so we are done.

Second solution, by deleting a chord Start from (1,0), and progress counterclockwise around
the unit circle. Keep a running counter x, beginning at 0. Increment it whenever we cross a
blue point, and decrement it whenever we cross a red point.

Say an arc R;B; is good if it contains (1,0), and bad otherwise. The following claim is
independent of the labeling of the red points, so it will suffice:



USAMO 2017 Eric Shen (Last updated June 12, 2020)

I Claim. The number of good arcs is the maximum value of z.

Reverse induct on n by deleting R; and B;. The base case n = 1 is obvious. First note that
arc R; By contains no blue points. There are two cases to consider:

e Suppose R/1E is bad. The maximum value of x occurs immediately after crossing a blue
point, so there is no change to x.

e Suppose R/1§1 is good. There are no blue points between (1,0) and Bj, nor are there

any between R; and (1,0), so the maximum value of z occurs on the counterclockwise arc
Bi1R;. Thus deleting Ry and B; decreases x by 1.

This proves the claim.
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§5 USAMO 2017/5 (Ricky Liu)

Problem 5 (USAMO 2017/5)

Find all real numbers ¢ > 0 such that there exists a labeling of the lattice points (z,y) € Z?
with positive integers for which:

e only finitely many distinct labels occur, and

e for each label i, the distance between any two points labeled i is at least ¢’

The answer is ¢ < v/2. We will describe a labeling for each ¢ < v/2, and then show ¢ = v/2 (and
hence ¢ > \@) does not work.

Construction for ¢ < v/2: Suppose that k is the smallest integer such that ¥ < (v/2)¥~1.
Toss on the complex plane, and denote

S1 ={z:Re(z) + Im(2) =1 (mod 2)}.

Now, let
Sy={2(141i):2€ 81}

for all 1 <t < k. Label all points in S; the label ¢, and label the rest of the points the label k.
It is easy to see that each point is in exactly one of Sy, S, ..., Sk, so this labeling works.

Proof for ¢ = v/2: We will show that no labeling exists. First we prove a lemma.

Lemma

It is impossible to place four points in the interior of a unit square such that any two points
are a distance of at least 1 apart.

Proof. Consider any four points in the interior of the unit square, and let O be the center of the
unit square. By the Pigeonhole Principle there are two points P and @ such that ZPOQ < 90°.
Then PQ? < OP? + 0Q? < 1, as desired. O

Next we claim the following, which obviously implies the desired result.

I Claim. Any square of size 2" x 2 must contain a cell with label greater than 2n.

We induct on n, with base case n = 1 obvious. Now suppose the claim is true for n — 1, and
assume for contradiction that it is possible to cells the points of a 2™ x 2™ square such that no
label exceeds 2n.

By the lemma, there are at most three cells labeled 2n; hence without loss of generality the
top-left 27! x 27~ grid does not contain a cell labeled 2n. By the inductive hypothesis, it
must contain a cell labeled 2n — 1.
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Consider the grid of dimensions 27! x 27~! directly to the right of the point labeled 2n—1, with
top row coinciding with the top row of the 2 x 2™ grid. Clearly this grid cannot contain a 2n—1,
so it contains a 2n; furthermore this 2n is in the top-right 27"~1 x 27! grid. Then it is easy to
construct a grid of dimensions 2"~ x 2"~! orthogonally adjacent to the cell labeled 2n — 1 and
either orthogonally or diagonally adjacent to the square labeled 2n. This grid contains neither
a 2n — 1 nor a 2n, contradiction.
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§6 USAMO 2017/6 (Titu Andreescu)

Problem 6 (USAMO 2017/6)

Find the minimum possible value of

a B b o c i d
B+4 S+4 dB+4 a3+4]

given that a, b, ¢, d are nonnegative real numbers such that a + b+ c+ d = 4.

The key is the tangent-line approximation

3
<

x 2
BiiS3 — 0<z(x+1)(x—2)".

By AM-GM, ab+ bc + cd + da = (a +¢c)(b+d) < 4, so

a a b3 ab _ 2
- = e ) >1 = >z
Zb3+4 %;4(1 b3+4>—1 £~ 12— 3’

cyc

with equality achieved by (a,b,c,d) = (2,2,0,0).
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