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§0 Problems

Problem 1. Prove that there exist infinitely many pairs of relatively prime positive integers

a > 1 and b > 1 such that ab + ba is divisible by a+ b.

Problem 2. Let m1, m2, . . ., mn be n (not necessarily distinct) positive integers. For any

sequence of integers A = (a1, . . . , an) and any permutation w = (w1, . . . , wn) of (m1, . . . ,mn),

define an A-inversion of ω to be a pair of indices i, j with i < j for which one of the following

conditions holds:

• ai ≥ wi > wj ,

• wj > ai ≥ wi, or

• wi > wj > ai.

Show that, for any two sequences of integers A = (a1, . . . , an) and B = (b1, . . . , bn), and for any

positive integer k, the number of permutations of (m1, . . . ,mn) having exactly k A-inversions

is equal to the number of permutations of (m1, . . . ,mn) having exactly k B-inversions.

Problem 3. Let ABC be a scalene triangle with circumcircle Ω and incenter I. Ray AI meets

BC at D and meets Ω again at M ; the circle with diameter DM cuts Ω again at K. Lines MK

and BC meet at S, and N is the midpoint of IS. The circumcircles of 4KID and 4MAN

intersect at points L1 and L2. Prove that Ω passes through the midpoint of either IL1 or IL2.

Problem 4. Let P1, P2, . . ., P2n be 2n distinct points on the unit circle x2 + y2 = 1, none of

which is (1, 0). Each point is colored either red of blue, with exactly n red points and n blue

points. Let R1, R2, . . ., Rn be any ordering of the red points. Let B1 be the nearest blue point

to R1 traveling counterclockwise around the circle starting from R1. Then let B2 be the nearest

of the remaining blue points to R2 traveling counterclockwise around the circle from R2, and

so on, until we have labeled all of the blue points B1, . . ., Bn.

Show that the number of counterclockwise arcs of the form Ri → Bi that contain the point

(1, 0) is independent of the way we chose the ordering R1, . . ., Rn of the red points.

Problem 5. Find all real numbers c > 0 such that there exists a labeling of the lattice points

(x, y) ∈ Z2 with positive integers for which:

• only finitely many distinct labels occur, and

• for each label i, the distance between any two points labeled i is at least ci.

Problem 6. Find the minimum possible value of

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4
,

given that a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4.

2



USAMO 2017 Eric Shen (Last updated June 12, 2020)

§1 USAMO 2017/1 (Gregory Galperin)

Problem 1 (USAMO 2017/1)

Prove that there exist infinitely many pairs of relatively prime positive integers a > 1 and

b > 1 such that ab + ba is divisible by a+ b.

For every k, the ordered pair (2k − 1, 2k + 1) works. Both elements are relatively prime. The

condition a+ b | ab + ba may be checked via binomial theorem as follows:

(2k − 1)2k+1 ≡ −1 + 2k(2k + 1) (mod 4k);

(2k + 1)2k−1 ≡ −1 + 2k(2k − 1) (mod 4k).

Thus (2k − 1)2k+1 + (2k + 1)2k−1 ≡ 0 (mod 4k).
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§2 USAMO 2017/2 (Maria Monks)

Problem 2 (USAMO 2017/2)

Let m1, m2, . . ., mn be n (not necessarily distinct) positive integers. For any sequence of

integers A = (a1, . . . , an) and any permutation w = (w1, . . . , wn) of (m1, . . . ,mn), define

an A-inversion of ω to be a pair of indices i, j with i < j for which one of the following

conditions holds:

• ai ≥ wi > wj ,

• wj > ai ≥ wi, or

• wi > wj > ai.

Show that, for any two sequences of integers A = (a1, . . . , an) and B = (b1, . . . , bn), and

for any positive integer k, the number of permutations of (m1, . . . ,mn) having exactly

k A-inversions is equal to the number of permutations of (m1, . . . ,mn) having exactly k

B-inversions.

We will prove for any A that the number of permutations having exactly k A-inversions equals

the number of permutations having exactly k inversions, where an inversion is a pair of indices

i, j with i < j and ai > aj .

The proof proceeds in two main steps:

(i) Prove the problem for m1 < · · · < mn (all distinct).

(ii) Extend to all m1 ≤ · · · ≤ mn (not necessarily distinct).

First, combinatorial proof of (i) Let InvA(i) be the number of j > i such that (wi, wj) is

an A-inversion. We will construct a bijection between (w1, . . . , wn) with k A-inversions and

(p1, . . . , pn) with k inversions. The process is as follows:

For each i = n, . . . , 1, write the variable pi on the board such that pi is the (InvA(i)+

1)th element from the left. (For instance, we first write pn on the board; then, if

InvA(n − 1) = 0, we write pn−1 to the left of pn, and if InvA(n − 1) = 1, we write

pn−1 to the right of pn.) Then set the ith variable from the left equal to mi. (For

instance, if the board reads p3, p1, p2, then we have p3 = m1, p1 = m2, p2 = m3.)

By design, for each i, the number of j < i with pi < pj equals InvA(i). Hence the number of

inversions of (p1, . . . , pn) equals the number of A-inversions of (w1, . . . , wn).

This operation is clearly injective, thus it is a bijection, and the proof is complete.

Second, inductive proof of (i), with generating functions We claim via induction on n that

the generating function for the number of permutations having k A-inversions is always

n!x = 1 · (1 + x) ·
(
1 + x+ x2

)
· · ·
(
1 + x+ · · ·+ xn−1

)
.

(Here, the number of permutations having k A-inversions is the coefficient of xk.)

The base case n = 1 is clear. Assume the claim is true for n − 1, and let mk ≤ a1 < mk+1

(with m0 = −∞, mn+1 =∞).

• For i ≥ 0, if w1 = mk−i, then there are n − i − 1 inversions with w1. (Namely (w1, wj)

with j < k − i or j ≥ k + 1.) Thus this case contributes a xn−i−1(n− 1)!x term.
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• For i > 0, if wi = mk+i, then there are i − 1 inversions with w1. (Namely (w1, wj), with

k + 1 ≤ j < k + i.) Thus this case contributes a xi(n− 1)!x term.

The new generating function is then

n!x = (n− 1)!x

(
k−1∑
i=0

xn−i−1 +
n−k∑
i=1

xi−1

)
= (n− 1)!x (1 + x+ · · ·+ xn−1) ,

as needed.

Proof of (ii), with generating functions What follows is really a combinatorial argument, but

expressing it without generating functions is a huge pain.

We reuse notation from the generating functions proof of (i), where n!x is the generating

function for the number of permutations of (m1, . . . ,mn) having k A-inversions. (It is not

necessary to know the explicit form for n!q that we used above.)

Let the multiset {m1, . . . ,mn} contain k distinct integers λ1 < · · · < λk with multiplicity

c1, . . ., ck respectively. Let F (x) be the generating function for the number of permutations of

(m1, . . . ,mn) having k A-inversions, with multiplicity (so F (1) = n!).

Claim. The explicit form for F (x) is

F (x) = n!x ·
c1!c2! · · · ck!

c1!xc2!x · · · ck!x
.

Proof. Slightly perturb each mi, replacing mi with mi + iε, where 0 < ε � 1/n. Then the

generating function is n!x. (Obviously both proofs to (i) still hold when (m1, . . . ,mn) are real

numbers.)

Next we undo each perturbation. For i = 1, . . . , k, I claim the excessive ordering of the ci
instances of λi contribute an overcount of ci!x/ci!. Indeed, there is a factor of ci!x that should

instead be ci! ·x0, since there are no inversions between equivalent elements of the permutation.

Undoing the overcounts, the claim then follows.

The xk coefficient of F (x) is the number of permutations having k A-inversions. This is

independent of A, so we are done.
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§3 USAMO 2017/3 (Evan Chen)

Problem 3 (USAMO 2017/3)

Let ABC be a scalene triangle with circumcircle Ω and incenter I. Ray AI meets BC at D

and meets Ω again at M ; the circle with diameter DM cuts Ω again at K. Lines MK and

BC meet at S, and N is the midpoint of IS. The circumcircles of 4KID and 4MAN

intersect at points L1 and L2. Prove that Ω passes through the midpoint of either IL1 or

IL2.

The obvious first step: let W be the midpoint of arc BAC, so W , D, K collinear. By AB/AC =

DB/DC = KB/KC, we have −1 = (AK;BC), and thus AS is the external bisector of ∠BAC.

A

B C

I

D

M

W

K

S

N

IA

IB

IC

T

L

To prove the problem, we will describe a point L with the three required properties: (i) the

midpoint of IL lies on (ABC), (ii) L lies on (MAN), and (iii) L lies on (KID).

Let WI intersect (ABC) again at T , and let L be the reflection of I over T . By design L

obeys condition (i).

To prove condition (ii), I contend M , A, N , L lie on the nine-point circle of 4IASW . Note

that ∠ILIA = ∠ITM = 90◦, so IAA ⊥WS and WL ⊥ IAS. It follows that I is the orthocenter

of 4IASW . Then the hypothesis in (ii) becomes clear.

Finally to verify (iii), recall that WB is tangent to (BIC), thus WI ·WL = WB2 = WD·WK

by Shooting lemma. This completes the proof.

Remark. This is really an orthocenter problem in terms of 4IAIBIC , with orthic triangle 4ABC.

The desired point L is the so-called “Queue point” of 4IAIBIC .

6



USAMO 2017 Eric Shen (Last updated June 12, 2020)

§4 USAMO 2017/4 (Maria Monks)

Problem 4 (USAMO 2017/4)

Let P1, P2, . . ., P2n be 2n distinct points on the unit circle x2 + y2 = 1, none of which

is (1, 0). Each point is colored either red of blue, with exactly n red points and n blue

points. Let R1, R2, . . ., Rn be any ordering of the red points. Let B1 be the nearest blue

point to R1 traveling counterclockwise around the circle starting from R1. Then let B2 be

the nearest of the remaining blue points to R2 traveling counterclockwise around the circle

from R2, and so on, until we have labeled all of the blue points B1, . . ., Bn.

Show that the number of counterclockwise arcs of the form Ri → Bi that contain the

point (1, 0) is independent of the way we chose the ordering R1, . . ., Rn of the red points.

First solution, by swapping adjacent points For any 1 ≤ i < n, we will consider what happens

when we swap the red points Ri, Ri+1.

Claim. If we swap Ri, Ri+1, then the new arcs RiBi, Ri+1Bi+1 will cover the same set of

points with multiplicity.

Proof. Delete all the other points. There are three possible ways to orient the four remaining

points Ri, Ri+1, Bi, Bi+1.

Ri

Ri+1

Bi

Bi+1

Ri+1

Ri

Bi

Bi+1

RiRi+1

Bi

Bi+1

Ri+1Ri

Bi

Bi+1

Ri

Ri+1

Bi

Bi+1 Ri+1

Ri

Bi

Bi+1

Case 1:

Case 2:

Case 3:

Observe that in all three cases above, the claim holds.

It suffices to check that for every permutation of (1, . . . , n), there is a sequence of moves in

which we swap adjacent elements that results in the original ordering (1, . . . , n). This can be

done via bubble sort, so we are done.

Second solution, by deleting a chord Start from (1, 0), and progress counterclockwise around

the unit circle. Keep a running counter x, beginning at 0. Increment it whenever we cross a

blue point, and decrement it whenever we cross a red point.

Say an arc RiBi is good if it contains (1, 0), and bad otherwise. The following claim is

independent of the labeling of the red points, so it will suffice:
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Claim. The number of good arcs is the maximum value of x.

Reverse induct on n by deleting R1 and B1. The base case n = 1 is obvious. First note that

arc R1B1 contains no blue points. There are two cases to consider:

• Suppose R̂1B1 is bad. The maximum value of x occurs immediately after crossing a blue

point, so there is no change to x.

• Suppose R̂1B1 is good. There are no blue points between (1, 0) and B1, nor are there

any between R1 and (1, 0), so the maximum value of x occurs on the counterclockwise arc

B1R1. Thus deleting R1 and B1 decreases x by 1.

This proves the claim.
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§5 USAMO 2017/5 (Ricky Liu)

Problem 5 (USAMO 2017/5)

Find all real numbers c > 0 such that there exists a labeling of the lattice points (x, y) ∈ Z2

with positive integers for which:

• only finitely many distinct labels occur, and

• for each label i, the distance between any two points labeled i is at least ci.

The answer is c <
√

2. We will describe a labeling for each c <
√

2, and then show c =
√

2 (and

hence c ≥
√

2) does not work.

Construction for c <
√

2: Suppose that k is the smallest integer such that ck < (
√

2)k−1.

Toss on the complex plane, and denote

S1 = {z : Re(z) + Im(z) ≡ 1 (mod 2)}.

Now, let

St = {z(1 + i) : z ∈ St−1}

for all 1 < t < k. Label all points in St the label t, and label the rest of the points the label k.

It is easy to see that each point is in exactly one of S1, S2, . . ., Sk, so this labeling works.

Proof for c =
√

2: We will show that no labeling exists. First we prove a lemma.

Lemma

It is impossible to place four points in the interior of a unit square such that any two points

are a distance of at least 1 apart.

Proof. Consider any four points in the interior of the unit square, and let O be the center of the

unit square. By the Pigeonhole Principle there are two points P and Q such that ∠POQ ≤ 90◦.

Then PQ2 ≤ OP 2 +OQ2 < 1, as desired.

Next we claim the following, which obviously implies the desired result.

Claim. Any square of size 2n × 2n must contain a cell with label greater than 2n.

We induct on n, with base case n = 1 obvious. Now suppose the claim is true for n − 1, and

assume for contradiction that it is possible to cells the points of a 2n × 2n square such that no

label exceeds 2n.

By the lemma, there are at most three cells labeled 2n; hence without loss of generality the

top-left 2n−1 × 2n−1 grid does not contain a cell labeled 2n. By the inductive hypothesis, it

must contain a cell labeled 2n− 1.
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5 6

Consider the grid of dimensions 2n−1×2n−1 directly to the right of the point labeled 2n−1, with

top row coinciding with the top row of the 2n×2n grid. Clearly this grid cannot contain a 2n−1,

so it contains a 2n; furthermore this 2n is in the top-right 2n−1 × 2n−1 grid. Then it is easy to

construct a grid of dimensions 2n−1× 2n−1 orthogonally adjacent to the cell labeled 2n− 1 and

either orthogonally or diagonally adjacent to the square labeled 2n. This grid contains neither

a 2n− 1 nor a 2n, contradiction.
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§6 USAMO 2017/6 (Titu Andreescu)

Problem 6 (USAMO 2017/6)

Find the minimum possible value of

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4
,

given that a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4.

The key is the tangent-line approximation

x3

x3 + 4
≤ x

3
⇐⇒ 0 ≤ x(x+ 1)(x− 2)2.

By AM-GM, ab+ bc+ cd+ da = (a+ c)(b+ d) ≤ 4, so

∑
cyc

a

b3 + 4
=
∑
cyc

a

4

(
1− b3

b3 + 4

)
≥ 1−

∑
cyc

ab

12
≥ 2

3
,

with equality achieved by (a, b, c, d) = (2, 2, 0, 0).
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