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USAMO 2016 Eric Shen (Last updated June 12, 2020)

§0 Problems

Problem 1. Let X1, X2, . . . , X100 be a sequence of mutually distinct nonempty subsets of a

set S. Any two sets Xi and Xi+1 are disjoint and their union is not the whole set S; that is,

Xi ∩Xi+1 = ∅ and Xi ∪Xi+1 6= S for all i ∈ {1, . . . , 99}. Find the smallest possible number of

elements in S.

Problem 2. Prove that for any positive integer k,

(k2)! ·
k−1∏
j=0

j!

(j + k)!

is an integer.

Problem 3. Let ABC be an acute triangle and let IB, IC , and O denote its B-excenter,

C-excenter, and circumcenter, respectively. Points E and Y are selected on AC such that

∠ABY = ∠CBY and BE ⊥ AC. Similarly, points F and Z are selected on AB such that

∠ACZ = ∠BCZ and CF ⊥ AB.

Lines IBF and ICE meet at P . Prove that PO and Y Z are perpendicular.

Problem 4. Find all functions f : R→ R such that for all real numbers x and y,

(f(x) + xy) · f(x− 3y) + (f(y) + xy) · f(3x− y) = (f(x+ y))2.

Problem 5. An equilateral pentagon AMNPQ is inscribed in triangle ABC such that M ∈
AB, Q ∈ AC, and N,P ∈ BC. Let S be the intersection of lines MN and PQ. Denote by `

the angle bisector of ∠MSQ.

Prove that OI is parallel to `, where O is the circumcenter and I is the incenter of triangle

ABC.

Problem 6. Integers n and k are given, with n ≥ k ≥ 2. You play the following game against

an evil wizard.

The wizard has 2n cards; for each i = 1, . . . , n, there are two cards labeled i. Initially, the

wizard places all cards face down in a row, in unknown order.

You may repeatedly make moves of the following form: you point to any k of the cards. The

wizard then turns those cards face up. If any two of the cards match, the game is over and you

win. Otherwise, you must look away, while the wizard arbitrarily permutes the k chosen cards

and then turns them back face-down. Then, it is your turn again.

We say this game is winnable if there exist some positive integer m and some strategy that

is guaranteed to win in at most m moves, no matter how the wizard responds.

For which values of n and k is the game winnable?
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USAMO 2016 Eric Shen (Last updated June 12, 2020)

§1 USAMO 2016/1

Problem 1 (USAMO 2016/1)

Let X1, X2, . . . , X100 be a sequence of mutually distinct nonempty subsets of a set S.

Any two sets Xi and Xi+1 are disjoint and their union is not the whole set S; that is,

Xi∩Xi+1 = ∅ and Xi∪Xi+1 6= S for all i ∈ {1, . . . , 99}. Find the smallest possible number

of elements in S.

The answer is 8. We first show that 8 works. We inductively construct a sequence of size

2n−1 + 1 where n = |S| and n ≥ 4, and assume WLOG that S = {1, 2, . . . , n}. Start with this

construction for n = 4:

34 1 23 4 12 3 14 2 13.

At every step, delete the last element, append the resulting sequence to itself, and add an n+ 1

in the middle. Then append n+ 1 to every other element. For instance, n = 5 gives

345 1 235 4 125 3 145 2 5

34 15 23 45 12 35 14 25.

This obviously works. Now assume for the sake of contradiction n = 7 works. It will be

immediate that no n less than 7 work. First note that sets of size at least 4 cannot be adjacent

to sets of size at least 3, so at most
(
7
1

)
+
(
7
2

)
sets in the sequence have size 4 or more. Hence

the length of the sequence cannot exceed(
7

1

)
+

(
7

2

)
+

(
7

3

)
+

(
7

1

)
+

(
7

2

)
= 91,

a contradiction.
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USAMO 2016 Eric Shen (Last updated June 12, 2020)

§2 USAMO 2016/2

Problem 2 (USAMO 2016/2)

Prove that for any positive integer k,

(k2)! ·
k−1∏
j=0

j!

(j + k)!

is an integer.

The key lemma is this:

Lemma

For all k and n,
k−1∑
j=0

(⌊
j + k

n

⌋
−
⌊
j

n

⌋)
≤
⌊
k2

n

⌋
.

Proof. Rewrite this as ⌊
k2

n

⌋
+

k−1∑
j=0

⌊
j

n

⌋
> −1 +

k−1∑
j=0

⌊
j + k

n

⌋
.

Noting that equality holds if we erase the floor symbols, we rewrite the inequality using the

fractional part: Denote {x} = x− bxc to obtain{
k2

n

}
+

k−1∑
j=0

{
j

n

}
< 1 +

k−1∑
j=0

{
j + k

n

}
.

This obviously holds, as {k2/n} < 1 and the sum of the remainders of 0, 1, . . . , k − 1 upon

division by n cannot exceed the sum of the remainders of k, k + 1, . . . , 2k − 1 (since the former

is the smallest possible sum of k consecutive remainders modulo n).

By Legendre’s Formula, for all primes p,

νp

k−1∏
j=0

(j + k)!

j!

 =
∞∑
t=1

k−1∑
j=0

(⌊
j + k

pt

⌋
−
⌊
j

pt

⌋) ≤ ∞∑
t=1

⌊
k2

pt

⌋
= νp

(
(k2)!

)
.

This completes the proof.
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USAMO 2016 Eric Shen (Last updated June 12, 2020)

§3 USAMO 2016/3 (Evan Chen, Telv Cohl)

Problem 3 (USAMO 2016/3)

Let ABC be an acute triangle and let IB, IC , and O denote its B-excenter, C-excenter, and

circumcenter, respectively. Points E and Y are selected on AC such that ∠ABY = ∠CBY
and BE ⊥ AC. Similarly, points F and Z are selected on AB such that ∠ACZ = ∠BCZ
and CF ⊥ AB.

Lines IBF and ICE meet at P . Prove that PO and Y Z are perpendicular.

A

B C

OI

L

IA

IB

IC

A1

A2

A3

A′

B′

C′

E
F

YZ

P

Let I be the incenter and IA the A-excenter of 4ABC. Denote by A′, B′, C ′ the reflections of

IA across BC, CA, AB respectively, and A1, B2, C3 the projections. The key claim is this:

Claim. Points D, I, A′ are collinear, and so are B′, E, IC and C ′, F , IB.

Proof. It is well-known that IA1 bisects AD. Since A, I, IA are collinear, so are D, I, A′. Now,

we will show that ICA2 bisects BE, whence the desired collinearity (B′, E, IC) follows from a

similar argument to above.

Let C2 be the projection of IC onto AC, so that IAA2 ‖ ICC2, and set K = ICA2 ∩ IAC2. By

the homothety centered at B sending the A- to C-excircle,

BIA
BIC

=
IAA2

ICC2
=
KA2

KIC
,

from which BK ‖ IAA2, and thus BK ⊥ AA2. Now, if S = AC ∩ IAIC we may conclude by

properties of trapezoid IAA2C2IC that K is the midpoint of BE.

By symmetry, our claim has been proven.1

Since IAB
′ = 2IAB0 = 2IAA0 = IAA

′ and CB′ = CIA = CA′, A′B′ ⊥ IAC, whence

A′B′ ‖ IIC . Similarly A′C ′ ‖ IIB and B′C ′ ‖ IBIC , thus 4A′B′C ′ and 4IIBIC are homothetic

with center P . It follows that P lies on line OIA.

However, OIA is the Euler line and Y Z the orthic axis of 4IIBIC . It is well-known that they

are perpendicular, whence PO ⊥ Y Z. This completes the proof.

1An alternate proof is to notice that −1 = (B,AC ∩ IAIC ; IC , IA)
B0= (B,E;BE ∩A2IC ,∞⊥AC).
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USAMO 2016 Eric Shen (Last updated June 12, 2020)

§4 USAMO 2016/4

Problem 4 (USAMO 2016/4)

Find all functions f : R→ R such that for all real numbers x and y,

(f(x) + xy) · f(x− 3y) + (f(y) + xy) · f(3x− y) = (f(x+ y))2.

The answer is f ≡ 0 and f(x) ≡ x2. Let P (x, y) denote the assertion.

Claim 1. f(0) = 0.

Proof. P (0, 0) gives 2f(0)2 = f(0)2, and thus f(0) = 0.

Claim 2. f is even.

Proof. P (0, y) gives f(y)f(−y) = f(y)2 and P (0,−y) gives f(y)f(−y) = f(−y)2. If f(y) = 0,

then f(−y) = 0 and the claim is true. Otherwise f(−y) = f(y), as desired.

Claim 3. For all x, either f(4x) = 0 or f(x) = x2.

Proof. P (x,−x) gives f(4x)
[
f(x) + f(−x)− 2x2

]
= 0. But recall that f(x) = f(−x), so if

f(4x) 6= 0, then f(x) = x2.

Claim 4. f(x) = 0 ⇐⇒ f(2x) = 0. In particular, f(x) = 0 or f(x) = x2 for all x.

Proof. Suppose x 6= 0. P (x, x) gives 2
(
f(x) + x2

)
f(2x) = f(2x)2. If f(x) = 0 but f(2x) 6= 0,

then 8x4 = 16x4, which is absurd If f(2x) = 0, then P (34x,
1
4x) gives

f(x)2 = f(2x)

(
f
(x

4

)
+

3x2

16

)
= 0,

as desired. Thus f(x) = x2 ⇐⇒ f(4x) 6= 0 ⇐⇒ f(x) 6= 0.

Claim 5. If there exists a 6= 0 with f(a) = 0, then f ≡ 0.

Proof. Note that f(x) ≥ 0 for all x, and furthermore by Claim 2 we can assume a > 0. If z > 0,

P (12a,−
1
2z) gives

0 ≤ f
(
a− z

2

)2

=
(
f
(a

2

)
− az

2

)
f(z) = −az

2
f(z).

But −1
2az < 0, so f(z) = 0, and by Claim 2 f ≡ 0, as desired.

It is easy to check that f ≡ 0 and f(x) ≡ x2 work, so we are done.
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USAMO 2016 Eric Shen (Last updated June 12, 2020)

§5 USAMO 2016/5

Problem 5 (USAMO 2016/5)

An equilateral pentagon AMNPQ is inscribed in triangle ABC such that M ∈ AB, Q ∈
AC, and N,P ∈ BC. Let S be the intersection of lines MN and PQ. Denote by ` the

angle bisector of ∠MSQ.

Prove that OI is parallel to `, where O is the circumcenter and I is the incenter of

triangle ABC.

First solution, by complex numbers Let X, Y , Z be the midpoints of arcs BC, CA, AB

not containing A, B, C on the circumcircle of 4ABC. Toss on the complex plane, with the

circumcircle of 4ABC as the unit circle, so that x+y+z denotes the incenter. We just need to

show that x+ y + z is in the direction perpendicular to the external angle bisector of ∠MSQ,

but since MN = PQ, the external angle bisector of ∠MSQ is just

(m− n) + (p− q) = (m− a) + (p− n) + (a− q) = ti(x+ y + z),

where t = AM = NP = QA. This completes the proof.

Second solution, by spiral similarity Let K = (SMQ) ∩ (SNP ) be the Miquel point of

MNPQ, and let X and Y denote the midpoints of MQ and MP respectively. Let AI intersect

(ABC) again at the arc midpoint L, so that LB = LI = LC by the Incenter-Excenter lemma.

A

B C

M

N P

Q

S

O

I

X

Y

L

K

Since MN = PQ, the spiral similarity at K sending MN to QP is a congruence; id est we have

4KMN ∼= 4KQP . Furthermore KM = KQ and KN = KP , so KX ⊥MQ and KY ⊥ NP .

Note that the antipode of K on (SMQ) lies on `, whence ]KXY = ]KMN = ]KMS =

](KX, `). Thus XY ‖ `, so we only need to prove XY ‖ IO. To do this, I contend 4KXY ∼
4LIO.

Recall A, X, I, K, L are collinear, so the similarity is a homothety and is sufficient. The

similarity follows from KY ‖ LO and

KX

KY
=
MQ

NP
=
MQ

AQ
=
BL

OL
=
IL

OL

since 4AMQ ∼ 4OBL. This completes the proof.
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§6 USAMO 2016/6

Problem 6 (USAMO 2016/6)

Integers n and k are given, with n ≥ k ≥ 2. You play the following game against an evil

wizard.

The wizard has 2n cards; for each i = 1, . . . , n, there are two cards labeled i. Initially,

the wizard places all cards face down in a row, in unknown order.

You may repeatedly make moves of the following form: you point to any k of the cards.

The wizard then turns those cards face up. If any two of the cards match, the game is over

and you win. Otherwise, you must look away, while the wizard arbitrarily permutes the k

chosen cards and then turns them back face-down. Then, it is your turn again.

We say this game is winnable if there exist some positive integer m and some strategy

that is guaranteed to win in at most m moves, no matter how the wizard responds.

For which values of n and k is the game winnable?

The answer is n > k. First assume that n > k, and point to cards 1 to k, 2 to k + 1, and so

on, up to 2n− k + 1 to 2n. Note that if any of the intervals contains a repeat element, we are

done. Otherwise, we now know the cards in indices 1 through 2n− k. But 2n− k > n, so two

of these are the same, and the game is winnable.

Now assume that n = k, and suppose that S = {1, 2, . . . , 2n} is the universal set. At any

step after the first, we know a partitioning of S into two sets A and Ac of size n such that no

two cards with indices in A have the same label. We know nothing about the orders, so if we

pick X ⊆ A and Y ⊆ AC , and point to X ∪ Y , then it is possible that the cards we pointed to

have labels 1, 2, . . . , n, and we are in the same exact scenario as before (A 7→ X ∪ Y ). Hence

the game is not winnable, as it is determined purely by the wizard’s actions.
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