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8§80 Problems

Problem 1. Solve in integers the equation

r+y 3
x2+a:y+y2=< 3 +1>.

Problem 2. Quadrilateral APBQ is inscribed in circle w with ZP = Z@Q = 90° and AP =
AQ < BP. Let X be a variable point on segment PQ). Line AX meets w again at S (other
than A). Point T lies on arc AQB of w such that XT is perpendicular to AX. Let M denote
the midpoint of chord ST.

As X varies on segment PQ, show that M moves along a circle.

Problem 3. Let S = {1,2,...,n}, where n > 1. Each of the 2" subsets of S is to be colored
red or blue. (The subset itself is assigned a color and not its individual elements.) For any set
T C S, we then write f(7') for the number of subsets of 1" that are blue.
Determine the number of colorings that satisfy the following condition: for any subsets T3
and 75 of S,
f(M) f(Tz) = f(Th UTL) f(Th N T).

Problem 4. Steve is piling m > 1 indistinguishable stones on the squares of an n xn grid. Each
square can have an arbitrarily high pile of stones. After he finished piling his stones in some
manner, he can perform stone mowves, defined as follows. Consider any four grid squares, which
are corners of a rectangle, i.e. in positions (i, k), (i,1), (j, k), (7,1) for some 1 < 7,5, k,l < n,
such that ¢« < 5 and k < [. A stone move consists of either removing one stone from each of
(i,k) and (j,1) and moving them to (i,1) and (j, k) respectively, or removing one stone from
each of (i,l) and (j, k) are moving them to (i, k) and (7, 1) respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another by a
sequence of stone moves. How many different non-equivalent ways can Steve pile the stones on
the grid?

Problem 5. Let a, b, ¢, d, e be distinct positive integers such that a* + b* = ¢* + d* = €°.
Show that ac + bd is a composite number.

Problem 6. Consider 0 < A < 1, and let A be a multiset of positive integers. Let A, = {a €

A :a <n}. Assume that for every n € N, the multiset A,, contains at most nA numbers. Show

that there are infinitely many n € N for which the sum of the elements in A,, is at most W)\.
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§1 USAMO 2015/1 (Titu Andreescu)

Problem 1 (USAMO 2015/1)

Solve in integers the equation

z+y 5
2t ay+y° = <3+1> :

The answer is

(K =3k + 1,k + 3k — 1)|Vk € Z,

and permutations.
Let a =2+ y and b =z — y, so that

302 + b’ ° 3
7‘1; :m2+y2+1‘y=<x;y+1> :(9+1) :

Hence, 3 | a, so let ¢ = §. It follows that
b =4(c+1)2 - 272 =4 — 15¢* + 12¢+ 4 = (¢ — 2)%(4c + 1),

so 4c + 1 is an odd perfect square; let (2k — 1)> = 4c + 1. Then ¢ = k*> — k and +b =
2k3 — 3k? — 3k + 2. Solving,

{z,y} = {k* = 3k + 1, — k> + 3k* — 1},

which work.
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§2 USAMO 2015/2 (Zuming Feng)

Problem 2 (USAMO 2015/2)
Quadrilateral APBQ is inscribed in circle w with /P = ZQ = 90° and AP = AQ < BP.
Let X be a variable point on segment PQ. Line AX meets w again at S (other than A).
Point T lies on arc AQB of w such that XT is perpendicular to AX. Let M denote the
midpoint of chord ST.

As X varies on segment PQ, show that M moves along a circle.

Let N, GG, O denote the nine-point center, centroid, and circumcenter of AAST, and let Y be
the midpoint of AS. Note that (M XY) is the nine-point circle of AAST.

S

Since
LAPX = LAPQ = LPQA = £PSA,

ANAPX ~ AASP, so AP? = AX - AS. Then,
, (1 2 1 1,
AN* — §AO =Pow(A,(MXY))=AX - AY = §AX -AS = §AP .

Since AO and AP are fixed, so is AN, whence N moves along a circle centered at A.
A homothety at O with scale factor % sends the locus of IV to the locus of G, and a homothety

at A with scale factor % sends the locus of G to the locus of M. Hence, M lies on a circle.
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§3 USAMO 2015/3

Problem 3 (USAMO 2015/3)
Let S = {1,2,...,n}, where n > 1. Each of the 2" subsets of S is to be colored red or blue.
(The subset itself is assigned a color and not its individual elements.) For any set T' C S,
we then write f(7") for the number of subsets of T' that are blue.
Determine the number of colorings that satisfy the following condition: for any subsets
Ty and Ts of S,
f(M) f(Tz) = f(Th U T) f(Th N T3).

The answer is 3™ + 1. All colorings (except everything red) are of the form: for some sets
A C B, color S blue if and only if A C S C B. It is easy to see that these work, say by PIE
with f(T) = 2TNB\A)

We will proceed by induction. The base case can be easily verified. Now color subsets
without n and subsets with n independently. Suppose a subset in the former category is colored
if and only if A1 C S C B; and a subset in the latter category is colored if and only if
Ao U{n} C S C ByU{n}. The goal is to prove A; = Ay and B; = Bs.

The key is to note

f(A)f(A2U{n}) = f(A1 N A2)f(A1 U A2 U {n}).
The left-hand expression is nonzero, so f(A; N Az) # 0 and A; C As. Note that
f(A2) f(A1U{n}) = f(A1)f(A2 U {n}).

Assume for contradiction A; C Ay. Then f(A41) = f(A1U{n}), so f(A2) = f(A2U{n}), absurd.
Analogously By = By, so we are done.
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§4 USAMO 2015/4

Problem 4 (USAMO 2015/4)

Steve is piling m > 1 indistinguishable stones on the squares of an n x n grid. Each
square can have an arbitrarily high pile of stones. After he finished piling his stones in
some manner, he can perform stone moves, defined as follows. Consider any four grid
squares, which are corners of a rectangle, i.e. in positions (i, k), (i,1), (j,k), (j,1) for some
1 <i,5,k, 1l <n, such that ¢ < j and k < [. A stone move consists of either removing
one stone from each of (i,k) and (j,!) and moving them to (i,1) and (j, k) respectively,
or removing one stone from each of (i,l) and (j, k) are moving them to (i, k) and (j,)
respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another
by a sequence of stone moves. How many different non-equivalent ways can Steve pile the
stones on the grid?

Let the m stones have coordinates (a1,b1), (a2,b2), ..., (am,bm). The signature (A, B) of the
piling is defined by the multisets A = {a; : 1 <i < m} and B = {b; : 1 <i < m}. Note that
under any stone move, the signature is invariant. Furthermore, each signature determines at
least one way of piling the stones: denote by a1 < as < --- < a,, and by < by < --- < by, the
elements of A and B and let the stones occupy squares (a1, b1), (a2, b2), ..., (@m,bm).

I contend that two pilings with the same signature are equivalent. Indeed, each stone move
sends the points (a;, b;) and (aj, b;) to (a;,b;) and (aj, b;) for some 7 and j. Thus we are merely
swapping b; and b;. Since each permutation is obtained by a series of swaps, each signature
determines an equivalence class.

Finally, by Stars and Bars there are (mt:_l)

2 . .
possible signatures.
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8§56 USAMO 2015/5 (Mohsen Jamali)

Problem 5 (USAMO 2015/5)

Let a, b, ¢, d, e be distinct positive integers such that a* + b* = ¢* 4+ d* = €. Show that
ac + bd is a composite number.

Assume for contradiction p = ac + bd is prime, and assume without loss of generality a < c.
Then

p|ac+bd | a*ct — btd* | o (e —dh) —d* (e® - a4)
=é" (a* —d*) = e’ (a —d)(a+d) (a* + d?).
However note that:

e p > e, since p° = (ac + bd)® > (a4 b)® > a® +b° > a* + b* = €5, where equality never
holds since a, b, ¢, d distinct.

e p > a+d, since ac + bd > a + d, where equality never holds since a, b, ¢, d distinct.

Hence p | a® + d?. This means ac + bd < a® + d?, or a(c — a) < d(d — b). Recall that a < ¢, so
b < d as well. This implies a* 4+ b* < ¢* 4 d*, which is absurd.

Remark. One solution is 37483800763*4-100380347806* = 8449738138144-85132700038* = 635318657°.
To generate this solution, we use the well-known equality 59* + 158% = 133% 4 134*. We let the
common value be z. Then (59z)* + (158z)* = (133z)* + (134z)* = 2 works.
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§6 USAMO 2015/6

Problem 6 (USAMO 2015/6)

Consider 0 < XA < 1, and let A be a multiset of positive integers. Let A, = {a € A:a < n}.

Assume that for every n € N, the multiset A,, contains at most nA numbers. Show that

there are infinitely many n € N for which the sum of the elements in A,, is at most n("TH))\.

Let a, be the multiplicity of n, and let y, = a1 + - -+ + a, and z, = nA — y, > 0. Assume for

contradiction that - Y
Ty < ! "1 foralln > N
n

for some large integer N.

I Claim. Showing this is impossible solves the problem.

Proof. Indeed, this implies that

1 - 1
Zkak_ n+ 1)y Zyk ”+ )A—(n+1)xn+zxk>MA

2
k=1
for sufficiently large n, contradiction. O

Denote € = min(A, 1—\). It is clear that |z, —x,,—1| > € for all n. Say that M is the maximum
value of x,, since the sequence is clearly bounded. Then since %(:rn + ZTpt1) < M — %5 for all
n, there is a large integer N7 such that

T1 4 F Tpy

Ty < <M—E for all n > Nj.
n 3

(Note that %6 is just an arbitrary constant smaller than %5) Now M decreases by %5 every
time we apply this argument, so eventually M < 0, contradiction.
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