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USAMO 2015 Eric Shen (Last updated June 12, 2020)

§0 Problems

Problem 1. Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

Problem 2. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP =

AQ < BP . Let X be a variable point on segment PQ. Line AX meets ω again at S (other

than A). Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let M denote

the midpoint of chord ST .

As X varies on segment PQ, show that M moves along a circle.

Problem 3. Let S = {1, 2, . . . , n}, where n ≥ 1. Each of the 2n subsets of S is to be colored

red or blue. (The subset itself is assigned a color and not its individual elements.) For any set

T ⊆ S, we then write f(T ) for the number of subsets of T that are blue.

Determine the number of colorings that satisfy the following condition: for any subsets T1
and T2 of S,

f(T1)f(T2) = f(T1 ∪ T2)f(T1 ∩ T2).

Problem 4. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n×n grid. Each

square can have an arbitrarily high pile of stones. After he finished piling his stones in some

manner, he can perform stone moves, defined as follows. Consider any four grid squares, which

are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for some 1 ≤ i, j, k, l ≤ n,

such that i < j and k < l. A stone move consists of either removing one stone from each of

(i, k) and (j, l) and moving them to (i, l) and (j, k) respectively, or removing one stone from

each of (i, l) and (j, k) are moving them to (i, k) and (j, l) respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another by a

sequence of stone moves. How many different non-equivalent ways can Steve pile the stones on

the grid?

Problem 5. Let a, b, c, d, e be distinct positive integers such that a4 + b4 = c4 + d4 = e5.

Show that ac+ bd is a composite number.

Problem 6. Consider 0 < λ < 1, and let A be a multiset of positive integers. Let An = {a ∈
A : a ≤ n}. Assume that for every n ∈ N, the multiset An contains at most nλ numbers. Show

that there are infinitely many n ∈ N for which the sum of the elements in An is at most n(n+1)
2 λ.
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USAMO 2015 Eric Shen (Last updated June 12, 2020)

§1 USAMO 2015/1 (Titu Andreescu)

Problem 1 (USAMO 2015/1)

Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

The answer is

(k3 − 3k + 1,−k3 + 3k2 − 1) ∀k ∈ Z,

and permutations.

Let a = x+ y and b = x− y, so that

3a2 + b2

4
= x2 + y2 + xy =

(
x+ y

3
+ 1

)3

=
(a

3
+ 1
)3
.

Hence, 3 | a, so let c = a
3 . It follows that

b2 = 4(c+ 1)3 − 27c2 = 4c3 − 15c2 + 12c+ 4 = (c− 2)2(4c+ 1),

so 4c + 1 is an odd perfect square; let (2k − 1)2 = 4c + 1. Then c = k2 − k and ±b =

2k3 − 3k2 − 3k + 2. Solving,

{x, y} = {k3 − 3k + 1,−k3 + 3k2 − 1},

which work.
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§2 USAMO 2015/2 (Zuming Feng)

Problem 2 (USAMO 2015/2)

Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ < BP .

Let X be a variable point on segment PQ. Line AX meets ω again at S (other than A).

Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let M denote the

midpoint of chord ST .

As X varies on segment PQ, show that M moves along a circle.

Let N , G, O denote the nine-point center, centroid, and circumcenter of 4AST , and let Y be

the midpoint of AS. Note that (MXY ) is the nine-point circle of 4AST .

O
A B

P

Q

X
Y

S

T

N
G M

Since

]APX = ]APQ = ]PQA = ]PSA,

4APX ∼ 4ASP , so AP 2 = AX ·AS. Then,

AN2 −
(

1

2
AO

)2

= Pow(A, (MXY )) = AX ·AY =
1

2
AX ·AS =

1

2
AP 2.

Since AO and AP are fixed, so is AN , whence N moves along a circle centered at A.

A homothety at O with scale factor 2
3 sends the locus of N to the locus of G, and a homothety

at A with scale factor 3
2 sends the locus of G to the locus of M . Hence, M lies on a circle.
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§3 USAMO 2015/3

Problem 3 (USAMO 2015/3)

Let S = {1, 2, . . . , n}, where n ≥ 1. Each of the 2n subsets of S is to be colored red or blue.

(The subset itself is assigned a color and not its individual elements.) For any set T ⊆ S,

we then write f(T ) for the number of subsets of T that are blue.

Determine the number of colorings that satisfy the following condition: for any subsets

T1 and T2 of S,

f(T1)f(T2) = f(T1 ∪ T2)f(T1 ∩ T2).

The answer is 3n + 1. All colorings (except everything red) are of the form: for some sets

A ⊆ B, color S blue if and only if A ⊆ S ⊆ B. It is easy to see that these work, say by PIE

with f(T ) = 2|T∩(B\A)|.

We will proceed by induction. The base case can be easily verified. Now color subsets

without n and subsets with n independently. Suppose a subset in the former category is colored

if and only if A1 ⊆ S ⊆ B1 and a subset in the latter category is colored if and only if

A2 ∪ {n} ⊆ S ⊆ B2 ∪ {n}. The goal is to prove A1 = A2 and B1 = B2.

The key is to note

f(A1)f(A2 ∪ {n}) = f(A1 ∩A2)f(A1 ∪A2 ∪ {n}).

The left-hand expression is nonzero, so f(A1 ∩A2) 6= 0 and A1 ⊆ A2. Note that

f(A2)f(A1 ∪ {n}) = f(A1)f(A2 ∪ {n}).

Assume for contradiction A1 ⊂ A2. Then f(A1) = f(A1∪{n}), so f(A2) = f(A2∪{n}), absurd.

Analogously B1 = B2, so we are done.
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§4 USAMO 2015/4

Problem 4 (USAMO 2015/4)

Steve is piling m ≥ 1 indistinguishable stones on the squares of an n × n grid. Each

square can have an arbitrarily high pile of stones. After he finished piling his stones in

some manner, he can perform stone moves, defined as follows. Consider any four grid

squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for some

1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of either removing

one stone from each of (i, k) and (j, l) and moving them to (i, l) and (j, k) respectively,

or removing one stone from each of (i, l) and (j, k) are moving them to (i, k) and (j, l)

respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another

by a sequence of stone moves. How many different non-equivalent ways can Steve pile the

stones on the grid?

Let the m stones have coordinates (a1, b1), (a2, b2), . . ., (am, bm). The signature (A,B) of the

piling is defined by the multisets A = {ai : 1 ≤ i ≤ m} and B = {bi : 1 ≤ i ≤ m}. Note that

under any stone move, the signature is invariant. Furthermore, each signature determines at

least one way of piling the stones: denote by a1 ≤ a2 ≤ · · · ≤ am and b1 ≤ b2 ≤ · · · ≤ bm the

elements of A and B and let the stones occupy squares (a1, b1), (a2, b2), . . ., (am, bm).

I contend that two pilings with the same signature are equivalent. Indeed, each stone move

sends the points (ai, bi) and (aj , bj) to (ai, bj) and (aj , bi) for some i and j. Thus we are merely

swapping bi and bj . Since each permutation is obtained by a series of swaps, each signature

determines an equivalence class.

Finally, by Stars and Bars there are
(
m+n−1

m

)2
possible signatures.
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§5 USAMO 2015/5 (Mohsen Jamali)

Problem 5 (USAMO 2015/5)

Let a, b, c, d, e be distinct positive integers such that a4 + b4 = c4 + d4 = e5. Show that

ac+ bd is a composite number.

Assume for contradiction p = ac + bd is prime, and assume without loss of generality a < c.

Then

p | ac+ bd | a4c4 − b4d4 | a4
(
e5 − d4

)
− d4

(
e5 − a4

)
= e5

(
a4 − d4

)
= e5(a− d)(a+ d)

(
a2 + d2

)
.

However note that:

• p > e, since p5 = (ac + bd)5 ≥ (a + b)5 ≥ a5 + b5 ≥ a4 + b4 = e5, where equality never

holds since a, b, c, d distinct.

• p > a+ d, since ac+ bd ≥ a+ d, where equality never holds since a, b, c, d distinct.

Hence p | a2 + d2. This means ac+ bd ≤ a2 + d2, or a(c− a) ≤ d(d− b). Recall that a < c, so

b < d as well. This implies a4 + b4 < c4 + d4, which is absurd.

Remark. One solution is 374838007634+1003803478064 = 844973813814+851327000384 = 6353186575.

To generate this solution, we use the well-known equality 594 + 1584 = 1334 + 1344. We let the

common value be x. Then (59x)4 + (158x)4 = (133x)4 + (134x)4 = x5 works.
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§6 USAMO 2015/6

Problem 6 (USAMO 2015/6)

Consider 0 < λ < 1, and let A be a multiset of positive integers. Let An = {a ∈ A : a ≤ n}.
Assume that for every n ∈ N, the multiset An contains at most nλ numbers. Show that

there are infinitely many n ∈ N for which the sum of the elements in An is at most n(n+1)
2 λ.

Let an be the multiplicity of n, and let yn = a1 + · · · + an and xn = nλ− yn > 0. Assume for

contradiction that

xn <
x1 + · · ·+ xn−1

n
for all n > N

for some large integer N .

Claim. Showing this is impossible solves the problem.

Proof. Indeed, this implies that

n∑
k=1

kak = (n+ 1)yn −
n∑

k=1

yk =
n(n+ 1)

2
λ− (n+ 1)xn +

n∑
k=1

xk >
n(n+ 1)

2
λ

for sufficiently large n, contradiction.

Denote ε = min(λ, 1−λ). It is clear that |xn−xn−1| ≥ ε for all n. Say that M is the maximum

value of xn, since the sequence is clearly bounded. Then since 1
2(xn + xn+1) < M − 1

2ε for all

n, there is a large integer N1 such that

xn <
x1 + · · ·+ xn−1

n
< M − ε

3
for all n > N1.

(Note that 1
3ε is just an arbitrary constant smaller than 1

2ε.) Now M decreases by 1
3ε every

time we apply this argument, so eventually M < 0, contradiction.
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