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§0 Problems

Problem 1. Let a, b, c, d be real numbers such that b − d ≥ 5 and all zeros x1, x2, x3, x4 of

the polynomial P (x) = x4 + ax3 + bx2 + cx + d are real. Find the smallest value the product

(x21 + 1)(x22 + 1)(x23 + 1)(x24 + 1) can take.

Problem 2. Find all f : Z→ Z such that

xf(2f(y)− x) + y2f(2x− f(y)) =
f(x)2

x
+ f(yf(y))

for all x, y ∈ Z such that x 6= 0.

Problem 3. Prove that there exists an infinite set of points

. . . , P−3, P−2, P−1, P0, P1, P2, P3, . . .

in the plane with the following property: for any three distinct integers a, b, c, points Pa, Pb,

Pc are collinear if and only if a+ b+ c = 2014.

Problem 4. Let k be a positive integer. Alex and Bob play a game on an infinite grid of

regular hexagons. Initially all the grid cells are empty. Then the players alternately take turns

with Alex moving first. In his move, Alex may choose two adjacent hexagons in the grid which

are empty and place a counter in both of them. In his move, Bob may choose any counter on

the board and remove it. If at any time there are k consecutive grid cells in a line all of which

contain a counter, Alex wins. Find the minimum value of k for which Alex cannot win in a

finite number of moves, or prove that no such minimum value exists.

Problem 5. Let ABC be a triangle with orthocenter H and let P be the second intersection

of the circumcircle of 4AHC with the internal bisector of ∠BAC. Let X be the circumcenter

of 4APB and Y the orthocenter of 4APC. Prove that the length of segment XY is equal to

the circumradius of 4ABC.

Problem 6. Prove that there is a constant c > 0 with the following property: If a, b, n are

positive integers such that gcd(a+ i, b+ j) > 1 for all i, j ∈ {0, 1, . . . , n}, then

min{a, b} > (cn)n/2.
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§1 USAMO 2014/1

Problem 1 (USAMO 2014/1)

Let a, b, c, d be real numbers such that b − d ≥ 5 and all zeros x1, x2, x3, x4 of the

polynomial P (x) = x4 + ax3 + bx2 + cx + d are real. Find the smallest value the product

(x21 + 1)(x22 + 1)(x23 + 1)(x24 + 1) can take.

The answer is 16. Let i =
√
−1. The key observation is that x2 +1 = (−i−x)(i−x); expressing

the relevant product in this form, we have

4∏
k=1

(
x2k + 1

)
=

4∏
k=1

(−i− xk)(i− xk)

= P (−i)P (i) = |P (i)|2

= |(1− b+ d) + (c− a)i|
= (1− b+ d)2 + (c− a)2

≥ (1− 5)2 = 16.

Equality holds when x1 = x2 = x3 = x4 = 1.
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§2 USAMO 2014/2

Problem 2 (USAMO 2014/2)

Find all f : Z→ Z such that

xf(2f(y)− x) + y2f(2x− f(y)) =
f(x)2

x
+ f(yf(y))

for all x, y ∈ Z such that x 6= 0.

The answers are f ≡ 0 and f(x) ≡ x2, which work. Let P (x, y) denote the assertion.

Claim 1. f(0) = 0.

Proof. Let p be any prime. By setting x = p, it is clear p | f(p), and by P (p, 0), we have

f(0) ≡ 0 (mod p) for all primes p. The claim follows.

Claim 2. For all n, either f(n) = f(−n) = 0 or f(n) = f(−n) = n2.

Proof. By P (n, 0), we have n2f(−n) = f(n)2, and analogously by P (−n, 0), we have n2f(n) =

f(−n)2. The claim should be obvious from here.

Finally we settle the pointwise trap. Let f(t) = 0 while t 6= 0; we will show f ≡ 0. Set y = t

to find

xf(x) + t2f(2x) =
f(x)2

x
.

In both cases f(x) = 0 and f(x) = x2, we have f(2x) = 0, so f sends all even integers to zero.

Let f(s) = s2 for odd s > 0 (since f is even). Set x 6= 0 even and y = s to find

s2f(2x− s2) = f(s3).

• If f(s3) = s6, then

s4 ∈
{

0, (2x− s2)2
}

for all x,

which is absurd.

• If f(s3) = 0, then vary x to show f sends all 3 (mod 4) numbers, except potentially −s2,
to zero. But f is even, so f sends all odds to zero, except potentially ±s2. In particular,

we have the contradiction f(s) = 0 unless s = 1. Take P (5, 1) to arrive at a contradiction.
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§3 USAMO 2014/3

Problem 3 (USAMO 2014/3)

Prove that there exists an infinite set of points

. . . , P−3, P−2, P−1, P0, P1, P2, P3, . . .

in the plane with the following property: for any three distinct integers a, b, c, points Pa,

Pb, Pc are collinear if and only if a+ b+ c = 2014.

The construction is Pn =
(
n, n3 − 2014n2

)
for all integers n.

Let f(x) = x3 − 2014x2. For any reals a, b, c, it holds that A = (a, f(a)), B = (b, f(b)),

C = (c, f(c)) are collinear if and only if a + b + c = 2014. This can be easily seen via Vieta’s

formulas: if the line y = px+ q passes through (a, f(a)), (b, f(b)), then the x-coordinates of its

intersection with f(x) satisfy 0 = x3 − 2014x2 − px − q, so its third intersection with f(x) is

(2014− a− b, f(2014− a− b)).
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§4 USAMO 2014/4

Problem 4 (USAMO 2014/4)

Let k be a positive integer. Alex and Bob play a game on an infinite grid of regular

hexagons. Initially all the grid cells are empty. Then the players alternately take turns

with Alex moving first. In his move, Alex may choose two adjacent hexagons in the grid

which are empty and place a counter in both of them. In his move, Bob may choose any

counter on the board and remove it. If at any time there are k consecutive grid cells in

a line all of which contain a counter, Alex wins. Find the minimum value of k for which

Alex cannot win in a finite number of moves, or prove that no such minimum value exists.

The answer is k = 6.

Bob’s strategy for k = 6: Consider the below “honeycomb” coloring. Bob can ensure that

at any point in time, at most one of the blue hexagons is colored; thus the longest line of labeled

hexagons has length five.

Alice’s strategy for k = 5: On the contrary, consider arbitrarily-long two chains of long

hexagons in a “parallelogram” formation as follows. Play strictly within the chain until it is no

longer possible; that is, until there are no two adjacent uncovered squares.

x y

If we have not won already, then there are two uncovered hexagons x, y in the top row with

k ≤ 4 covered hexagons between them.

• If k = 4, we just win by covering either x or y.

• If k ≤ 3, then consider the hexagons in the bottom row adjacent to x and y. By hypothesis,

all four are covered, and at most one of the k−2 ≤ 2 hexagons between them is uncovered.

We can easily win by filling it.
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§5 USAMO 2014/5

Problem 5 (USAMO 2014/5)

Let ABC be a triangle with orthocenter H and let P be the second intersection of the

circumcircle of 4AHC with the internal bisector of ∠BAC. Let X be the circumcenter of

4APB and Y the orthocenter of 4APC. Prove that the length of segment XY is equal

to the circumradius of 4ABC.

By properties of the orthocenter, (APC) is the reflection of (ABC) over AC, and the reflection

of Y over AC lies on (APC), so Y lies on (ABC). Let O′ be the circumcenter of 4APC, i.e.

the reflection of O over AC, and let P ′ be the reflection of P over AC, so that P ′ lies on (ABC)

and Y PP ′ ⊥ AC.

O

A

B C

O′

P

X

Y

P ′

Claim. 4OAY ∼ 4OO′X.

Proof. First ]OXO′ = ]BAP = ]PAC = ]XO′O, so OX = OO′. Furthermore

]OY A = 90◦ + ]PP ′A = 90◦ + ]APP ′ = ]PAC = ]XO′O,

and the claim readily follows.

Thus O is the center of spiral similarity sending AY to O′X. As spiral similarities come in

pairs, 4OXY ∼ 4OO′A. Since OY = OA, this similarity is a rotation, so XY = AO′ = AO,

as needed.
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§6 USAMO 2014/6

Problem 6 (USAMO 2014/6)

Prove that there is a constant c > 0 with the following property: If a, b, n are positive

integers such that gcd(a+ i, b+ j) > 1 for all i, j ∈ {0, 1, . . . , n}, then

min{a, b} > (cn)n/2.

To simplify computation, we only use i, j ∈ {1, . . . , n}. We will prove the stronger bound

min{a, b} > (cn)n for sufficiently large n.

Let ε = 10−10 be small. Consider the n × n grid defined by the points (a + i, b + j) where

i, j ∈ {1, . . . , n}, and in each cell place the least prime factor of gcd(a+ i, b+ j). Note that each

prime p divides at most (1 + n/p)2 cells of the grid.

Claim. For n large, at most n2/2 of the cells of the grid contain a prime p < εn2.

Proof. The number of primes covered is∑
p<εn2

(
1 +

n

p

)
≤ π(εn2) + 2n

∑
p<εn2

1

n
+ n2

∑
p<n

1

p2
<
n2

2

for sufficiently large n.

Remark. Some more details on the estimates: where s = εn2, we have

π(s) =
s

log s

(
1 +O

(
1

log s

))
= o

(
n2
)

∑
p<s

1

p
<

s∑
k=1

1

p
= O(log s) = o(n2)

∑
p<s

1

p2
<
∑
p

1

p2
≈ 0.452 <

1

2
.

For curiosity sake, the best bound for the second expression is
∑

p<s
1
p = log log s · (1 + o(1)).

Remark. Here is an easy proof of
∑

p
1
p2 <

1
2 . Note that

∑
n odd

1

n2
=
∑
n

1

n2
−
∑

n even

1

n2
=

3

4
· π

2

6
<

5

4

by π2 < 10. Then ∑
p

1

p2
< − 1

12
+

1

22
+
∑
n odd

1

n2
<

1

2
.

Hence for some i, the row a + i contains at least n/2 primes p ≥ εn2. For n > ε−1, none of

the primes divide two numbers of the form b+ j, so these n/2 primes are all distinct. Then

(a+ i)n > (εn2)n/2 = εn/2 · nn,

as needed.
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Remark. We prove min{a, b} > (cn)n instead. The requested bound (cn)n/2 is derived by proving

primes p < n cover at most n2/2 cells, and using that estimate instead.

9


	Problems
	USAMO 2014/1
	USAMO 2014/2
	USAMO 2014/3
	USAMO 2014/4
	USAMO 2014/5
	USAMO 2014/6

