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8§80 Problems

Problem 1. Let a, b, ¢, d be real numbers such that b — d > 5 and all zeros x1, x2, x3, T4 of
the polynomial P(z) = * 4+ ax3 + bx? + cx + d are real. Find the smallest value the product
(2 + 1) (23 + 1)(23 + 1)(23 + 1) can take.

Problem 2. Find all f : Z — 7Z such that

2f(2f(y) =) +y*f(2x — f(y)) =

T 2
L)

for all z,y € Z such that x # 0.

Problem 3. Prove that there exists an infinite set of points
cony Pog, Po, Py, Py, P, P, Ps, ...

in the plane with the following property: for any three distinct integers a, b, ¢, points P,, P,
P, are collinear if and only if a + b 4+ ¢ = 2014.

Problem 4. Let k be a positive integer. Alex and Bob play a game on an infinite grid of
regular hexagons. Initially all the grid cells are empty. Then the players alternately take turns
with Alex moving first. In his move, Alex may choose two adjacent hexagons in the grid which
are empty and place a counter in both of them. In his move, Bob may choose any counter on
the board and remove it. If at any time there are k consecutive grid cells in a line all of which
contain a counter, Alex wins. Find the minimum value of k£ for which Alex cannot win in a
finite number of moves, or prove that no such minimum value exists.

Problem 5. Let ABC be a triangle with orthocenter H and let P be the second intersection
of the circumcircle of AAHC with the internal bisector of ZBAC. Let X be the circumcenter
of AAPB and Y the orthocenter of AAPC'. Prove that the length of segment XY is equal to
the circumradius of AABC.

Problem 6. Prove that there is a constant ¢ > 0 with the following property: If a, b, n are
positive integers such that ged(a + 4,0+ j) > 1 for all i, 5 € {0,1,...,n}, then

min{a, b} > (cn)™?.
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§1 USAMO 2014/1

Problem 1 (USAMO 2014/1)

Let a, b, ¢, d be real numbers such that b — d > 5 and all zeros 1, x2, x3, x4 of the
polynomial P(z) = 2% + ax® + bx? + cx + d are real. Find the smallest value the product
(23 + 1) (23 + 1)(23 + 1) (2% + 1) can take.

The answer is 16. Let i = /—1. The key observation is that 22 +1 = (—i—x)(i — z); expressing
the relevant product in this form, we have

4

4
IT (23 +1) = J](~i — @) (i — )

k=1 k=1

= P(=i)P(i) = |P(i)]”
(1=b+d)+ (c— a)il
=(1—=b+d)*+ (c—a)?
> (1 -5)% = 16.

Equality holds when 1 = 9 = 3 = z4 = 1.
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§2 USAMO 2014/2

Problem 2 (USAMO 2014/2)
Find all f : Z — 7Z such that

f(x)?

X

zf(2f(y) —z) + ¥ f(2x — f(y)) = + f(yf())

for all z,y € Z such that x # 0.

The answers are f =0 and f(z) = 22, which work. Let P(z,y) denote the assertion.

I Claim 1. f(0) =0.

Proof. Let p be any prime. By setting x = p, it is clear p | f(p), and by P(p,0), we have
f(0) =0 (mod p) for all primes p. The claim follows. O

I Claim 2. For all n, either f(n) = f(—n) =0 or f(n) = f(—n) = n?.

Proof. By P(n,0), we have n?f(—n) = f(n)?, and analogously by P(—n,0), we have n?f(n)
f(—=n)2. The claim should be obvious from here.

oo

Finally we settle the pointwise trap. Let f(¢) = 0 while ¢ # 0; we will show f =0. Set y = ¢

to find
f(z)?
-

zf(x) + 2 f(2z) =

In both cases f(x) = 0 and f(x) = 22, we have f(2x) = 0, so f sends all even integers to zero.
Let f(s) = s? for odd s > 0 (since f is even). Set x # 0 even and y = s to find

s2f(2z — %) = f(s°).
o If f(s3) = s then
st €{0,(2z — %)} forall z,
which is absurd.
e If f(s3) =0, then vary  to show f sends all 3 (mod 4) numbers, except potentially —s2,

to zero. But f is even, so f sends all odds to zero, except potentially +s2. In particular,
we have the contradiction f(s) = 0 unless s = 1. Take P(5,1) to arrive at a contradiction.
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§3 USAMO 2014/3

Problem 3 (USAMO 2014/3)

Prove that there exists an infinite set of points
coog P,g, P,27 Pflv P07 P17 P2a P37

in the plane with the following property: for any three distinct integers a, b, ¢, points P,,
Py, P, are collinear if and only if a + b+ ¢ = 2014.

The construction is P, = (n, n? — 2014n2) for all integers n.

Let f(x) = o3 — 201422, For any reals a, b, ¢, it holds that A = (a, f(a)), B = (b, f(b)),
C = (c, f(c)) are collinear if and only if a + b+ ¢ = 2014. This can be easily seen via Vieta’s
formulas: if the line y = px + ¢ passes through (a, f(a)), (b, f(b)), then the z-coordinates of its
intersection with f(z) satisfy 0 = x3 — 20142% — px — ¢, so its third intersection with f(z) is
(2014 — a — b, £(2014 — a — b)).
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§4 USAMO 2014/4

Problem 4 (USAMO 2014/4)

Let k be a positive integer. Alex and Bob play a game on an infinite grid of regular
hexagons. Initially all the grid cells are empty. Then the players alternately take turns
with Alex moving first. In his move, Alex may choose two adjacent hexagons in the grid
which are empty and place a counter in both of them. In his move, Bob may choose any
counter on the board and remove it. If at any time there are k consecutive grid cells in
a line all of which contain a counter, Alex wins. Find the minimum value of k for which
Alex cannot win in a finite number of moves, or prove that no such minimum value exists.

The answer is k = 6.

Bob’s strategy for k£ = 6: Consider the below “honeycomb” coloring. Bob can ensure that
at any point in time, at most one of the blue hexagons is colored; thus the longest line of labeled
hexagons has length five.

Alice’s strategy for k£ = 5: On the contrary, consider arbitrarily-long two chains of long
hexagons in a “parallelogram” formation as follows. Play strictly within the chain until it is no
longer possible; that is, until there are no two adjacent uncovered squares.

If we have not won already, then there are two uncovered hexagons z, y in the top row with
k < 4 covered hexagons between them.

o If k =4, we just win by covering either = or y.

o If k& < 3, then consider the hexagons in the bottom row adjacent to x and y. By hypothesis,
all four are covered, and at most one of the £ —2 < 2 hexagons between them is uncovered.
We can easily win by filling it.
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§6 USAMO 2014/5

Problem 5 (USAMO 2014/5)

Let ABC be a triangle with orthocenter H and let P be the second intersection of the
circumcircle of AAHC with the internal bisector of ZBAC. Let X be the circumcenter of
AAPB and Y the orthocenter of AAPC. Prove that the length of segment XY is equal
to the circumradius of AABC.

By properties of the orthocenter, (APC) is the reflection of (ABC) over AC, and the reflection
of Y over AC lies on (APC), so Y lies on (ABC). Let O’ be the circumcenter of AAPC, i.e.
the reflection of O over AC, and let P’ be the reflection of P over AC, so that P’ lies on (ABC)
and YPP' L AC.

Claim. AOAY ~ AOO'X.

Proof. First {OX0' = {BAP = LPAC = £X0'0O, so OX = OO’. Furthermore
LOYA=90°+ 4APP'A=90°+ LAPP' = {PAC = £X0'O,
and the claim readily follows. O

Thus O is the center of spiral similarity sending AY to O’X. As spiral similarities come in
pairs, AOXY ~ AOO'A. Since OY = OA, this similarity is a rotation, so XY = A0’ = AO,
as needed.
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§6 USAMO 2014/6

Problem 6 (USAMO 2014/6)

Prove that there is a constant ¢ > 0 with the following property: If a, b, n are positive
integers such that ged(a +14,b+ j) > 1 for all 4,5 € {0,1,...,n}, then

min{a, b} > (cn)™>.

To simplify computation, we only use i,5 € {1,...,n}. We will prove the stronger bound
min{a,b} > (cn)" for sufficiently large n.

Let ¢ = 107! be small. Consider the n x n grid defined by the points (a + i,b + j) where
i,7 € {1,...,n}, and in each cell place the least prime factor of gcd(a+1i,b+ j). Note that each
prime p divides at most (1 +n/p)? cells of the grid.

Claim. For n large, at most n?/2 of the cells of the grid contain a prime p < en?.

Proof. The number of primes covered is
n?
1 < 2 ~ 4 n? —
Z < + p) T en ) +2n Z +n Z 5
p<en? p<en2 P<n

for sufficiently large n. O

Remark. Some more details on the estimates: where s = en?, we have

n(s) = lo‘;s (1+0 (10;)) =0 (n?)
Z Z O(log s) = o(n?)

p<s

1
;E<EI;P@0.452<5.

For curiosity sake, the best bound for the second expression is > p =loglog s - (14 o(1)).

Remark. Here is an easy proof of Zp % < % Note that

by 72 < 10. Then

Hence for some i, the row a + i contains at least n/2 primes p > en?. For n > 7!, none of
the primes divide two numbers of the form b + j, so these n/2 primes are all distinct. Then

(a+0)" > (6n2)”/2 =2 . pn,

as needed.
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Remark. We prove min{a,b} > (cn)" instead. The requested bound (cn)™/?

primes p < n cover at most n?/2 cells, and using that estimate instead.

is derived by proving
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