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USA TST 2020 Eric Shen (Last updated April 29, 2020)

§0 Problems

Problem 1. Choose positive integers b1, b2, . . . satisfying

1 =
b1
12

>
b2
22

>
b3
32

>
b4
42

> · · ·

and let r denote the largest real number satisfying bn
n2 ≥ r for all positive integers n. What are

the possible values of r across all possible choices of the sequence (bn)?

Problem 2. Two circles Γ1 and Γ2 have common external tangents `1 and `2 meeting at T .

Suppose `1 touches Γ1 at A and `2 touches Γ2 at B. A circle Ω through A and B intersects Γ1

again at C and Γ2 again at D, such that quadrilateral ABCD is convex.

Suppose lines AC and BD meet at point X, while lines AD and BC meet at point Y . Show

that T , X, Y are collinear.

Problem 3. Let α ≥ 1 be a real number. Hephaestus and Poseidon play a turn-based game

on an infinite grid of unit squares. Before the game starts, Poseidon chooses a finite number of

cells to be flooded. Hephaestus is building a levee, which is a subset of unit edges of the grid

(called walls) forming a connected, non-self-intersecting path or loop.

The game begins with Hephaestus moving first. On each of Hephaestus’s turns, he adds one

or more walls to the levee, as long as the total length of the levee is at most αn after his nth

turn. On each of Poseidon’s turns, every cell which is adjacent to an already flooded cell and

with no wall between them becomes flooded as well.

Hephaestus wins if the levee forms a closed loop such that all flooded cells are contained in

the interior of the loop — hence stopping the flood and saving the world. For which α can

Hephaestus guarantee victory in a finite number of turns no matter how Poseidon chooses the

initial cells to flood?

Problem 4. For a finite simplegraph G, we define G′ to be the graph on the same vertex set

as G, where for any two vertices u 6= v, the pair {u, v} is an edge of G′ if and only if u and v

have a common neighbor in G. Prove that if G is a finite simple graph which is isomorphic to

(G′)′, then G is also isomorphic to G′.

Problem 5. Find all integers n ≥ 2 for which there exists an integer m and a polynomial P (x)

with integer coefficients satisfying the following three conditions:

• m > 1 and gcd(m,n) = 1;

• the numbers P (0), P 2(0), . . ., Pm−1(0) are not divisible by n; and

• Pm(0) is divisible by n.

Here P k means P applied k times, so P 1(0) = P (0), P 2(0) = P (P (0)), etc.

Problem 6. Let P1P2 · · ·P100 be a cyclic 100-gon, and let Pi = Pi+100 for all i. Define Qi as

the intersection of diagonals Pi−2Pi+1 and Pi−1Pi+2 for all integers i.

Suppose there exists a point P satisfying PPi ⊥ Pi−1Pi+1 for all integers i. Prove that the

points Q1, Q2, . . ., Q100 are concyclic.
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USA TST 2020 Eric Shen (Last updated April 29, 2020)

§1 USA TST 2020/1 (Carl Schildkraut, Milan Haiman)

Problem 1 (USA TST 2020/1)

Choose positive integers b1, b2, . . . satisfying

1 =
b1
12

>
b2
22

>
b3
32

>
b4
42

> · · ·

and let r denote the largest real number satisfying bn
n2 ≥ r for all positive integers n. What

are the possible values of r across all possible choices of the sequence (bn)?

The answer is 0 ≤ r ≤ 1/2.

Claim 1. r = 1/2 works, and is maximal.

Proof. To achieve r = 1/2, take bn = n(n+ 1)/2, from which

bn
n2

=
n(n+ 1)

2n2
=
n+ 1

2n
=

1

2
+

1

2n
,

which clearly satisfies the problem condition. We inductively show that bn ≤ n(n + 1)/2. The

base case has been given to us. Now, if the hypothesis holds for all integers less than n, then

bn
n2

<
bn−1

(n− 1)2
≤ n

2(n− 1)
=⇒ bn <

n3

2(n− 1)
.

It is easy to verify the largest possible bn is n(n+ 1)/2, as claimed.

Claim 2. All r < 1/2 work.

Proof. Consider the sequence (an) defined by an :=
⌈
kn2

⌉
+ n. Since an is O(n2) and k < 1/2,

there exists N such that for all n ≥ N , an/n
2 < 1/2. I claim the sequence

bn :=

{
n(n+ 1)/2 for n < N

an for n ≥ N

works. By definition of N , bn/n
2 > bn+1/(n + 1)2 for n < N , so it suffices to verify an/n

2 is

strictly decreasing for n ≥ N .

In other words, we want to show that

L :=

⌈
kn2

⌉
+ n

n2
>

⌈
k(n+ 1)2

⌉
+ n+ 1

(n+ 1)2
=: R

for all n ≥ N . Since
⌈
kn2

⌉
≥ kn2,

L ≥ kn2 + n

n2
= k +

1

n
,

and similarly since
⌈
k(n+ 1)2

⌉
< k(n+ 1)2 + 1,

R <
k(n+ 1)2 + n+ 2

(n+ 1)2
= k +

n+ 2

(n+ 1)2
,

so it suffices to verify that

1

n
≥ n+ 2

(n+ 1)2
⇐⇒ (n+ 1)2 ≥ n(n+ 2),

which is true.

Combining these two claims, we are done.
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§2 USA TST 2020/2 (Merlijn Staps)

Problem 2 (USA TST 2020/2)

Two circles Γ1 and Γ2 have common external tangents `1 and `2 meeting at T . Suppose `1
touches Γ1 at A and `2 touches Γ2 at B. A circle Ω through A and B intersects Γ1 again

at C and Γ2 again at D, such that quadrilateral ABCD is convex.

Suppose lines AC and BD meet at point X, while lines AD and BC meet at point Y .

Show that T , X, Y are collinear.

First solution, by inversion (Brandon Wang) Let `1 and `2 intersect Ω again at E and F

respectively.

T

A

B

P

Q

X

C

D

E

F

Y

Z

The key claim is this:

Claim. AB, CD, EF concur.

Proof. Invert at A, using •′ to denote the inverse, to obtain the following picture.

`′1

Γ′
1

Γ′
2 `′2B′

T ′ A

C′

E′

D′

F ′

The homothety at B′ sending Γ′2 to `′2 sends `′1 to Γ′1, so

B′C ′

B′F ′
=
B′E′

B′D′
=⇒ B′C ′ ·B′D′ = B′E′ ·B′F ′,

whence B′ lies on the radical axis of (AC ′D′) and (AE′F ′). Inverting back gives the desired

conclusion.

Let Z = AB ∩ CD, and let ` be the polar of Z with respect to Ω. By Brokard’s theorem on

ABCD, ` = XY , but by Brokard’s theorem on ABEF , ` = TX. Thus T , X, Y are collinear,

as desired.
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USA TST 2020 Eric Shen (Last updated April 29, 2020)

Second solution, by moving points Since ABCD is convex, Γ1 and Γ2 intersect at two points

P and Q; else, the radical axis intersects all four segments AB, BC, CD, DA, which is absurd.

By radical axis theorem, X lies on ` := PQ. Animate X on `. We will show that AD, BC,

TX concur at a point Y .

Then C and D move projectively on their respective circles, so AC, BD each have degree 2

and TX has degree 1. The concurrence has degree 5, so we need to verify the hypothesis for 6

values of X.

• Take X at infinity along `. Then C and D are the reflections of A and B in the line

through the centers of Γ1 and Γ2, so Y = T .

• Take X = ` ∩AB. Then A, B, C, D collinear, so the result is clear.

• Take X = ` ∩ AT . Then C = A, so Y = A, which lies on TX. The case X = ` ∩ BT
follows analogously.

• Take X = P . Then, C = D = P , so Y = P , from which the conclusion is clear. The case

X = Q follows analogously.

This completes the proof.

Remark. Edward Wan notes that we can instead move the center O of Ω and show that −1 =

T (AB;XZ), where Z = AB ∩ CD. It can be shown that O → X and O → Z are projective, so

this reduces the problem to three cases.

Remark. I think working in CP2 allows us to discard the condition that Γ1 and Γ2 intersect (that

is, ABCD convex) by choosing P and Q as their non-real intersections if they do not intersect.

5



USA TST 2020 Eric Shen (Last updated April 29, 2020)

§3 USA TST 2020/3 (Nikolai Beluhov)

Problem 3 (USA TST 2020/3)

Let α ≥ 1 be a real number. Hephaestus and Poseidon play a turn-based game on an

infinite grid of unit squares. Before the game starts, Poseidon chooses a finite number of

cells to be flooded. Hephaestus is building a levee, which is a subset of unit edges of the

grid (called walls) forming a connected, non-self-intersecting path or loop.

The game begins with Hephaestus moving first. On each of Hephaestus’s turns, he adds

one or more walls to the levee, as long as the total length of the levee is at most αn after his

nth turn. On each of Poseidon’s turns, every cell which is adjacent to an already flooded

cell and with no wall between them becomes flooded as well.

Hephaestus wins if the levee forms a closed loop such that all flooded cells are contained

in the interior of the loop — hence stopping the flood and saving the world. For which

α can Hephaestus guarantee victory in a finite number of turns no matter how Poseidon

chooses the initial cells to flood?

The answer is α > 2.

Proof of sufficiency: Take some α > 2. We show it is possible to contain the flood. Our

strategy is as follows. Here the blue circle is a large region (that grows in both directions at a

rate of 1 cell per move) that contains all the flooded cells.

Step I: Build Step II: Engulf

Step III: Zoom Step IV: Eat

I. Build a giant wall. The total vertical height of the flood changes by at most 2 a move.

Start by building a wall sufficiently far away of arbitrary height. Since α > 2, the wall

can be arbitrarily tall compared to the flood, while remaining a constant distance away

from the center of the flood (since the wall can stop the flood from spreading to the other

side).

II. Engulf the flood. After the wall is sufficiently large, begin constructing walls rightward

until the rightmost point on our walls is to the right of the rightmost point of the flood.

The flood moves rightward at a rate of at most 1 cell per move, while we can alternate

between extending the top wall and the bottom wall, each increasing at a rate of α/2 > 1

cells per move. If the original wall was large enough, the wall can extend past the flood

without colliding into it, as the distance from the rightmost point of the wall and the

rightmost point of the flood decreases by α/2− 1 cells each move.

III. Zoom past the flood. Now, we essentially repeat the above process. The wall can be

built rightward at a rate of α/2 > 1, so we may extend an arbitrarily large distance past

the rightmost point of the flood.
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IV. Eat the flood. Finally, build the eastern wall. If we have “zoomed” sufficiently far past

the flood, we can contain the entire flood, thus completing the process.

Thus if α > 2, Hephaestus can stop the flood and save the world.

Proof of necessity: Given two cells A and B in the flood, let L be the shortest path between

A and B (including the endpoints) that does not intersect the levee, say it has length |L|, and

furthermore say the levee has perimeter P .

Claim. For any shortest path L between two cells A and B, we have 2(|L|+ 1) ≤ P .

Proof. From every cell in L, draw rays emanating from the center of that cell that do not lie

along L; thus two rays are drawn from every cell except the endpoints, from which three are

drawn. Stop these rays once they hit the levee (so that they are now segments), and call them

beams.

I claim that no point on the levee lies on two or more beams. Beams are either parallel or

perpendicular, but perpendicular beams intersect at the center of a cell, and thus not on the

levee, so for two beams to intersect on the levee, the lines containing them must coincide and

the corresponding rays must be in the same direction.

Let these two rays emanate from X and Y . Then by definition of these beams, L does not

contain segment XY . But XY does not intersect the levee, so we may instead go directly from

X to Y , contradicting the assumption that L is the shortest path.

With this, the claim readily follows.

Suppose Poseidon starts with a flooded square A surrounded by four flooded squares, and

assume Hephaestus can stop the flood. Call the final state of the levee when the flood is sealed

off the final levee. Let B be a point in the contained flood, and let L be the shortest path

between A and B that does not intersect the final levee. Suppose that |L| is maximal among

all B in the contained flood. Again let P be the perimeter of the final levee.

Note that if there is a wall at any point, it must be a part of the final levee. The flood will

grow along L until it reaches B. Since it already has a 1 cell head-start (since A is surrounded

by four flooded squares) and we have assumed that |L| is maximal, at most |L| − 1 moves have

passed. It follows that Hephaestus has built at most α(|L| − 1) walls, so

α(|L| − 1) ≥ P ≥ 2(|L|+ 1) =⇒ α > 2,

and we are done.
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§4 USA TST 2020/4 (Mehtaab Sawhney, Zack Chroman)

Problem 4 (USA TST 2020/4)

For a finite simplegraph G, we define G′ to be the graph on the same vertex set as G, where

for any two vertices u 6= v, the pair {u, v} is an edge of G′ if and only if u and v have

a common neighbor in G. Prove that if G is a finite simple graph which is isomorphic to

(G′)′, then G is also isomorphic to G′.

Define a sequence of graphs by G0 = G and Gn = G′n−1. I will show that for all connected

graphs G, if G ' Gn for some positive integer n, then G ' G1. To see how this finishes the

problem, note that for any graph G, if G ' G′′, then the connected components of G must have

been permuted. Keep permuting the connected components until they map to themselves.

Henceforth G is connected.

Claim 1. If some vertex v in G has degree ≥ 3, then for all triples of neighbors v1, v2, v3
of v, all three edges of 4v1v2v3 are in G.

Proof. Let t(G) be the number of triangles in G. Assume for contradiction 4v1v2v3 is not

in G. Note that for any triangle δ in any graph G, δ is also in G′. Since 4v1v2v3 is in G′,

t(Gn) ≥ t(G′) > t(G), contradiction.

Claim 2. If some vertex in G has degree d ≥ 3, then G is a clique.

Proof. We proceed inductively on the number of vertices n. The base case, n = 4, is by Claim

1. Now assume the claim holds for all graphs with less than n vertices.

Let v be the vertex of minimal degree, and assume that G is not a clique. I claim that if

we delete v, the resulting graph still contains a vertex of degree ≥ 3. Otherwise, v must be

connected to a vertex w of degree 3, and all vertices not neighbors with v have degree ≤ 2, so

by Claim 1, v is also connected to the other neighbors w1 and w2 of w, so its degree is at least

3. Unless v is connected to all vertices of G (contradicting the assumption G is not a clique),

there is a vertex of degree less than v, contradiction.

By the inductive hypothesis, removing v from the graph results in a clique. Applying Claim

1 on all vertices in the clique proves that v is connected to all other vertices, so G is a clique,

as claimed.

Cliques obviously obey the problem statement, so assume all vertices have degree at most 2.

Then G is either a singleton, a long chain, or a polygon; we ignore the singleton, which is easy

to settle. Of these, only for a polygon with an odd number of sides is G′′ connected. In this

case, if G is the polygon V1V2V3 · · ·Vn−1Vn (n odd), then G′ is V1V3V5 · · ·Vn−2V1, so G ' G′,

and we are done.
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§5 USA TST 2020/5 (Carl Schildkraut)

Problem 5 (USA TST 2020/5)

Find all integers n ≥ 2 for which there exists an integer m and a polynomial P (x) with

integer coefficients satisfying the following three conditions:

• m > 1 and gcd(m,n) = 1;

• the numbers P (0), P 2(0), . . ., Pm−1(0) are not divisible by n; and

• Pm(0) is divisible by n.

Here P k means P applied k times, so P 1(0) = P (0), P 2(0) = P (P (0)), etc.

All n for which rad(n) is the product of the first k primes (for some k) fail, while all other n

work.

Let period(P mod n) denote the smallest positive integer m with Pm(0) ≡ 0 (mod n), and

infinity if such m does not exist. The key observation is

period(P mod n) = lcm
pe‖n

period (P mod pe) , (∗)

which follows from Chinese Remainder theorem.

Construction: We first construct prime powers:

Claim 1. Given a prime power pe, for each 1 ≤ m < p there is a polynomial P ∈ (Z/peZ)[X]

with period(P mod pe) = m

Proof. Just take

P (X) = X + 1− m

(m− 1)!
·X(X − 1) · · · (X −m+ 2).

We can check P (0) = 1, P (1) = 2, . . ., P (m− 2) = m− 1, P (m− 1) = 0.

For valid n, take pe ‖ n with q < p a prime not dividing n, and consider the polynomial Q

such that period(P mod pe) = q. Let t be a multiple of n/pe with t ≡ 1 (mod pe) (which exists

by Chinese Remainder theorem), and set P = t ·Q. Then P works by (∗).

Proof of necessity: What follows is more-or-less the converse of Claim 1. By (∗) it is

sufficient to prove the claim.

Claim 2. Given a prime power pe, a polynomial P , and a prime q, if q | period(P mod p),

then q ≤ p.

Proof. We induct on e. Clearly period(P mod p) ≤ p by Pigeonhole on P (0), P 2(0), . . ., P p(0).

By the same argument, we have period(P mod pe) | period(P mod pe+1) and

period(P mod pe+1)

period(P mod pe)
∈ {1, 2, . . . , p}.

The inductive step follows.
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§6 USA TST 2020/6 (Michael Ren)

Problem 6 (USA TST 2020/6)

Let P1P2 · · ·P100 be a cyclic 100-gon, and let Pi = Pi+100 for all i. Define Qi as the

intersection of diagonals Pi−2Pi+1 and Pi−1Pi+2 for all integers i.

Suppose there exists a point P satisfying PPi ⊥ Pi−1Pi+1 for all integers i. Prove that

the points Q1, Q2, . . ., Q100 are concyclic.

Replace 100 with n. Shown below is an example for n = 8. Let Ri = PPi ∩ Pi−1Pi+1 be the

foot from P to Pi−1Pi+1, and let Si = Pi−1Pi+1 ∩ PiPi+2.

P

Q

P1

P2

P3

P4

P5

P6

P7

P8

Q1

Q2

Q3

Q4
Q5

Q6

Q7

Q8

R1

R2

R3

R4

R5

R6

R7

R8

S1

S2

S3

S4

S5

S6

S7

S8

T1

T2

T3

T4

T5

T6

T7

T8

Claim 1. R1R2 · · ·Rn is cyclic.

Proof. Since ∠PiRiPi+1 = ∠PiRi+1Pi+1 = 90◦ for each i, we have PPi · PRi = PPi+1 · PRi+1,

meaning inversion at P with radius
√
PPi · PRi, which is fixed, sends the circumcircle of

P1P2 · · ·Pn to that of R1R2 · · ·R100.

Claim 2. QiQi+1 ‖ RiRi+1 for all i.

Proof. By Reim’s theorem on (PiRiRi+1Pi+1) and (Pi−1PiPi+1Pi+2), QiQi+1 = Pi−1Pi+2 ‖
RiRi+1.
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Since P has a pedal circle in S1S2 · · ·S100, the reflection Q over the center of the pedal circle

is the isogonal conjugate of P in S1S2 · · ·S100. Let Ti be the foot from Q to Pi−1Pi+1, so that

there is a fixed circle through both Ri and Ti for all i.

Claim 3. 4Pi−1PiPi+1 and 4Ti−1TiTi+1 are homothetic.

Proof. By Reim’s theorem on (PiRiRi−1Pi−1) and (RiTiTi−1Ri−1), we have PiPi−1 ‖ TiTi−1,
and similarly PiPi+1 ‖ TiTi+1. Also PiSi−1 · PiRi−1 = PiRi · PiP = PiSi+1 · PiRi+1, so

Ri−1Si−1SiRi+1 is cyclic, and Pi−1Pi+1 ‖ Ri−1Ri+1 by Reim’s theorem on (Ri−1Si−1SiRi+1)

and (Ri−1Ti−1Ti+1Ri+1).

Claim 4. QSi ⊥ QiQi+1 for all i.

Proof. Since Si is the orthocenter of 4PPiPi+1, we know PSi ⊥ PiPi+1. Note that SiP and

SiQ are isogonal wrt. ∠PiSiPi+1, and PiPi+1 and Pi−1Pi+2 are isogonal, so QSi ⊥ Pi−1Pi+2, as

claimed.

Claim 5. Q, Qi, Ti are collinear for all i.

Proof. By the parallel lines from Claim 3,

TiSi−1
Si−1Pi−1

=
TiTi−1
PiPi−1

=
TiTi+1

PiPi+1
=

TiSi
SiPi+2

.

Hence a homothety at S sends4QiPi−1Pi+1 to4HiSi−1Si for some pointHi withQSi ⊥ HiSi−1
and QSi−1 ⊥ HiSi. It follows that Hi is the orthocenter of 4QiSi−1Si, so Hi lies on QTi. This

is sufficient, since Hi ∈ TiQi by the homothety.

From this, 4PRiRi+1 and 4QQiQi+1 for each i, so R1R2 · · ·Rn ∼ Q1Q2 · · ·Qn. Since the

former is cyclic, so is the latter, thus concluding the proof.
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