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8§80 Problems

Problem 1. Choose positive integers by, bs, ... satisfying

and let r denote the largest real number satisfying 2—’5 > r for all positive integers n. What are
the possible values of r across all possible choices of the sequence (by,)?

Problem 2. Two circles I'1 and I'y have common external tangents /1 and /o meeting at T
Suppose ¢1 touches I'1 at A and s touches I's at B. A circle € through A and B intersects I'y
again at C' and I'y again at D, such that quadrilateral ABCD is convex.

Suppose lines AC and BD meet at point X, while lines AD and BC meet at point Y. Show
that T', X, Y are collinear.

Problem 3. Let a > 1 be a real number. Hephaestus and Poseidon play a turn-based game
on an infinite grid of unit squares. Before the game starts, Poseidon chooses a finite number of
cells to be flooded. Hephaestus is building a levee, which is a subset of unit edges of the grid
(called walls) forming a connected, non-self-intersecting path or loop.

The game begins with Hephaestus moving first. On each of Hephaestus’s turns, he adds one
or more walls to the levee, as long as the total length of the levee is at most an after his nth
turn. On each of Poseidon’s turns, every cell which is adjacent to an already flooded cell and
with no wall between them becomes flooded as well.

Hephaestus wins if the levee forms a closed loop such that all flooded cells are contained in
the interior of the loop — hence stopping the flood and saving the world. For which a can
Hephaestus guarantee victory in a finite number of turns no matter how Poseidon chooses the
initial cells to flood?

Problem 4. For a finite simplegraph G, we define G’ to be the graph on the same vertex set
as G, where for any two vertices u # v, the pair {u,v} is an edge of G’ if and only if v and v
have a common neighbor in G. Prove that if G is a finite simple graph which is isomorphic to
(G'), then G is also isomorphic to G'.

Problem 5. Find all integers n > 2 for which there exists an integer m and a polynomial P(z)
with integer coefficients satisfying the following three conditions:

e m > 1 and ged(m,n) = 1;

e the numbers P(0), P%(0), ..., P™ 1(0) are not divisible by n; and

e P(0) is divisible by n.
Here P*¥ means P applied k times, so P1(0) = P(0), P%(0) = P(P(0)), etc.
Problem 6. Let PP --- Pjgg be a cyclic 100-gon, and let P; = P; 1190 for all . Define Q; as
the intersection of diagonals P;_oP;11 and P;_1 P15 for all integers .

Suppose there exists a point P satisfying PP; 1 P;_1 P, for all integers i. Prove that the
points Q1, @2, ..., Q100 are concyclic.
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§1 USA TST 2020/1 (Carl Schildkraut, Milan Haiman)

Problem 1 (USA TST 2020/1)

Choose positive integers by, bo, ... satisfying

b b b b
1>72>73>74>...

l=h>3>32>g

and let r denote the largest real number satisfying Z—g > r for all positive integers n. What
are the possible values of r across all possible choices of the sequence (by,)?

The answer is 0 < r < 1/2.

Claim 1. r =1/2 works, and is maximal.

Proof. To achieve r = 1/2, take b,, = n(n + 1)/2, from which
bp n(n+1) n+1 1 1

n? 2n2 2n 2 2n’
which clearly satisfies the problem condition. We inductively show that b, < n(n + 1)/2. The
base case has been given to us. Now, if the hypothesis holds for all integers less than n, then

by, bn—1 n n3
— < = by < 77—
n2 " (n—1)2 7" 2(n-1) "7 2(n—1)
It is easy to verify the largest possible by, is n(n + 1)/2, as claimed. O

Claim 2. All r < 1/2 work.

Proof. Consider the sequence (a,) defined by a,, := [kn?| + n. Since a,, is O(n?) and k < 1/2,
there exists N such that for all n > N, a,/n? < 1/2. T claim the sequence

{n(n+l)/2 forn < N
a

b, =
" n forn > N

works. By definition of N, b,/n? > b,11/(n +1)2 for n < N, so it suffices to verify a,/n? is
strictly decreasing for n > N.
In other words, we want to show that

[kn?| +n - [k(n+1)*] +n+1 _

L= =R
n? (n+1)2
for all n > N. Since Umﬂ > kn?,
2
L> kn ;I—n ok 17
n n
and similarly since [k(n + 1)?] < k(n+1)? +1,
k(n+1)24+n+2 n+2
R < =k+ ——
(n+ 1 BRCESIE:
so it suffices to verify that
1 n+2 9
- = 1H)” > 2
R (n+1)* > n(n+2),
which is true. O

Combining these two claims, we are done.
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§2 USA TST 2020/2 (Merlijn Staps)

Problem 2 (USA TST 2020/2)

Two circles I'1 and I's have common external tangents ¢; and ¢o meeting at T'. Suppose {1
touches I'y at A and ¢ touches I'y at B. A circle 2 through A and B intersects I'; again
at C and I's again at D, such that quadrilateral ABCD is convex.

Suppose lines AC' and BD meet at point X, while lines AD and BC meet at point Y.
Show that T, X, Y are collinear.

First solution, by inversion (Brandon Wang) Let ¢; and ¢y intersect 2 again at F and F
respectively.

The key claim is this:

Claim. AB, CD, EF concur.

Proof. Invert at A, using o' to denote the inverse, to obtain the following picture.

4 E T __A
, D’
T2 B A
/
I E
Cl

The homothety at B" sending I, to ¢, sends ¢} to I'}, so

B'C' B'E
B'F' — B'D

— B/C'-B'D' =BE -BF,

whence B’ lies on the radical axis of (AC'D’) and (AE'F’). Inverting back gives the desired
conclusion. O

Let Z = ABNCD, and let ¢ be the polar of Z with respect to Q. By Brokard’s theorem on
ABCD, ¢ = XY, but by Brokard’s theorem on ABEF, ¢ = TX. Thus T, X, Y are collinear,
as desired.
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Second solution, by moving points Since ABCD is convex, Iy and I's intersect at two points
P and Q); else, the radical axis intersects all four segments AB, BC, CD, DA, which is absurd.
By radical axis theorem, X lies on £ := PQ. Animate X on ¢. We will show that AD, BC,
TX concur at a point Y.
Then C' and D move projectively on their respective circles, so AC, BD each have degree 2
and TX has degree 1. The concurrence has degree 5, so we need to verify the hypothesis for 6
values of X.

e Take X at infinity along ¢. Then C and D are the reflections of A and B in the line
through the centers of I'y and I'g, so Y =1T.

o Take X = /N AB. Then A, B, C, D collinear, so the result is clear.

e Take X = /N AT. Then C = A, so Y = A, which lies on TX. The case X = ¢ N BT
follows analogously.

e Take X = P. Then, C' =D = P, so Y = P, from which the conclusion is clear. The case
X = (Q follows analogously.

This completes the proof.

Remark. Edward Wan notes that we can instead move the center O of Q and show that —1 =
T(AB; XZ), where Z = ABN CD. It can be shown that O — X and O — Z are projective, so
this reduces the problem to three cases.

Remark. I think working in CP? allows us to discard the condition that I'; and I'y intersect (that
is, ABCD convex) by choosing P and @ as their non-real intersections if they do not intersect.
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8§83 USA TST 2020/3 (Nikolai Beluhov)

Problem 3 (USA TST 2020/3)

Let « > 1 be a real number. Hephaestus and Poseidon play a turn-based game on an
infinite grid of unit squares. Before the game starts, Poseidon chooses a finite number of
cells to be flooded. Hephaestus is building a levee, which is a subset of unit edges of the
grid (called walls) forming a connected, non-self-intersecting path or loop.

The game begins with Hephaestus moving first. On each of Hephaestus’s turns, he adds
one or more walls to the levee, as long as the total length of the levee is at most an after his
nth turn. On each of Poseidon’s turns, every cell which is adjacent to an already flooded
cell and with no wall between them becomes flooded as well.

Hephaestus wins if the levee forms a closed loop such that all flooded cells are contained
in the interior of the loop — hence stopping the flood and saving the world. For which
«a can Hephaestus guarantee victory in a finite number of turns no matter how Poseidon

chooses the initial cells to flood?

The answer is o > 2.

Proof of sufficiency: Take some a > 2. We show it is possible to contain the flood. Our
strategy is as follows. Here the blue circle is a large region (that grows in both directions at a
rate of 1 cell per move) that contains all the flooded cells.

Step I: Build Step II: Engulf

Step III: Zoom Step IV: Eat

I. Build a giant wall. The total vertical height of the flood changes by at most 2 a move.
Start by building a wall sufficiently far away of arbitrary height. Since o > 2, the wall
can be arbitrarily tall compared to the flood, while remaining a constant distance away
from the center of the flood (since the wall can stop the flood from spreading to the other
side).

II. Engulf the flood. After the wall is sufficiently large, begin constructing walls rightward
until the rightmost point on our walls is to the right of the rightmost point of the flood.

The flood moves rightward at a rate of at most 1 cell per move, while we can alternate
between extending the top wall and the bottom wall, each increasing at a rate of o/2 > 1
cells per move. If the original wall was large enough, the wall can extend past the flood
without colliding into it, as the distance from the rightmost point of the wall and the
rightmost point of the flood decreases by /2 — 1 cells each move.

III. Zoom past the flood. Now, we essentially repeat the above process. The wall can be
built rightward at a rate of «/2 > 1, so we may extend an arbitrarily large distance past
the rightmost point of the flood.



USA TST 2020 Eric Shen (Last updated April 29, 2020)

IV. Eat the flood. Finally, build the eastern wall. If we have “zoomed” sufficiently far past
the flood, we can contain the entire flood, thus completing the process.

Thus if a > 2, Hephaestus can stop the flood and save the world.

Proof of necessity: Given two cells A and B in the flood, let L be the shortest path between
A and B (including the endpoints) that does not intersect the levee, say it has length |L|, and
furthermore say the levee has perimeter P.

Claim. For any shortest path L between two cells A and B, we have 2(|L| + 1) < P.

Proof. From every cell in L, draw rays emanating from the center of that cell that do not lie
along L; thus two rays are drawn from every cell except the endpoints, from which three are
drawn. Stop these rays once they hit the levee (so that they are now segments), and call them
beams.

I claim that no point on the levee lies on two or more beams. Beams are either parallel or
perpendicular, but perpendicular beams intersect at the center of a cell, and thus not on the
levee, so for two beams to intersect on the levee, the lines containing them must coincide and
the corresponding rays must be in the same direction.

Let these two rays emanate from X and Y. Then by definition of these beams, L does not
contain segment XY. But XY does not intersect the levee, so we may instead go directly from
X to Y, contradicting the assumption that L is the shortest path.

With this, the claim readily follows. O

Suppose Poseidon starts with a flooded square A surrounded by four flooded squares, and
assume Hephaestus can stop the flood. Call the final state of the levee when the flood is sealed
off the final levee. Let B be a point in the contained flood, and let L be the shortest path
between A and B that does not intersect the final levee. Suppose that |L| is maximal among
all B in the contained flood. Again let P be the perimeter of the final levee.

Note that if there is a wall at any point, it must be a part of the final levee. The flood will
grow along L until it reaches B. Since it already has a 1 cell head-start (since A is surrounded
by four flooded squares) and we have assumed that |L| is maximal, at most |L| — 1 moves have
passed. It follows that Hephaestus has built at most a(|L| — 1) walls, so

oLl —=1)>P>2(LI+1) = a>2,

and we are done.
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84 USA TST 2020/4 (Mehtaab Sawhney, Zack Chroman)

Problem 4 (USA TST 2020/4)

For a finite simplegraph G, we define G’ to be the graph on the same vertex set as G, where
for any two vertices u # v, the pair {u,v} is an edge of G’ if and only if u and v have
a common neighbor in G. Prove that if G is a finite simple graph which is isomorphic to
(G"Y, then G is also isomorphic to G'.

!/

Define a sequence of graphs by Gop = G and G,, = Gj,_;.
graphs G, if G ~ G,, for some positive integer n, then G ~ G1. To see how this finishes the
problem, note that for any graph G, if G ~ G”, then the connected components of G' must have

I will show that for all connected

been permuted. Keep permuting the connected components until they map to themselves.
Henceforth G is connected.

Claim 1. If some vertex v in G has degree > 3, then for all triples of neighbors v, v, v3
of v, all three edges of Avivsvs are in G.

Proof. Let t(G) be the number of triangles in G. Assume for contradiction Awvjvavs is not
in G. Note that for any triangle ¢ in any graph G, 0 is also in G’. Since Awvivgvs is in G/,
t(Gp) > t(G') > t(G), contradiction. O

I Claim 2. If some vertex in G has degree d > 3, then G is a clique.

Proof. We proceed inductively on the number of vertices n. The base case, n = 4, is by Claim
1. Now assume the claim holds for all graphs with less than n vertices.

Let v be the vertex of minimal degree, and assume that G is not a clique. I claim that if
we delete v, the resulting graph still contains a vertex of degree > 3. Otherwise, v must be
connected to a vertex w of degree 3, and all vertices not neighbors with v have degree < 2, so
by Claim 1, v is also connected to the other neighbors w; and wo of w, so its degree is at least
3. Unless v is connected to all vertices of G (contradicting the assumption G is not a clique),
there is a vertex of degree less than v, contradiction.

By the inductive hypothesis, removing v from the graph results in a clique. Applying Claim
1 on all vertices in the clique proves that v is connected to all other vertices, so G is a clique,
as claimed. O

Cliques obviously obey the problem statement, so assume all vertices have degree at most 2.
Then G is either a singleton, a long chain, or a polygon; we ignore the singleton, which is easy
to settle. Of these, only for a polygon with an odd number of sides is G” connected. In this
case, if G is the polygon ViVoVs---V,,_1V, (n odd), then G’ is ViV3V5---V,_oVi, so G ~ G,
and we are done.
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§5 USA TST 2020/5 (Carl Schildkraut)

Problem 5 (USA TST 2020/5)

Find all integers n > 2 for which there exists an integer m and a polynomial P(x) with
integer coefficients satisfying the following three conditions:

e m > 1 and ged(m,n) = 1;
e the numbers P(0), P%(0), ..., P™ 1(0) are not divisible by n; and
e P™(0) is divisible by n.

Here P* means P applied k times, so P1(0) = P(0), P2(0) = P(P(0)), etc.

All n for which rad(n) is the product of the first k& primes (for some k) fail, while all other n
work.

Let period(P mod n) denote the smallest positive integer m with P™(0) =0 (mod n), and
infinity if such m does not exist. The key observation is

period(P mod n) = lclrln period (P mod p), (%)
pé|n

which follows from Chinese Remainder theorem.

Construction: We first construct prime powers:

Claim 1. Given a prime power p€, for each 1 < m < p there is a polynomial P € (Z/p°Z)[X]
with period(P mod p¢) = m

Proof. Just take
m
PX)=X41-— - X(X-1)--- (X — 2).
()= X 41 I X (X ) (X = m+2)

We can check P(0) =1, P(1)=2,...,P(m—2)=m—1, P(m—1) =0. O
For valid n, take p® || n with ¢ < p a prime not dividing n, and consider the polynomial @

such that period(P mod p°®) = q. Let t be a multiple of n/p® with t =1 (mod p€) (which exists
by Chinese Remainder theorem), and set P = ¢ - Q. Then P works by (x).

Proof of necessity: What follows is more-or-less the converse of Claim 1. By (x) it is
sufficient to prove the claim.

Claim 2. Given a prime power p°, a polynomial P, and a prime ¢, if ¢ | period(P mod p),
then ¢ < p.

Proof. We induct on e. Clearly period(P mod p) < p by Pigeonhole on P(0), P?(0), ..., PP(0).
By the same argument, we have period(P mod p¢) | period(P mod p**!) and

period(P mod pt)

1,2,... .
period(P mod p®) €{L.2,..p}

The inductive step follows. O
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§6 USA TST 2020/6 (Michael Ren)

Problem 6 (USA TST 2020/6)
Let PiPs--- Pigo be a cyclic 100-gon, and let P; = P;1q99 for all i. Define @; as the
intersection of diagonals P;_oP;+1 and P;_j P49 for all integers 1.

Suppose there exists a point P satisfying PP; | P;_1P;y; for all integers i. Prove that
the points Q1, Q2, ..., Q100 are concyclic.

Replace 100 with n. Shown below is an example for n = 8. Let R; = PP; N P,_1P;11 be the
foot from P to Pj_1 P41, and let S; = P,_1 P41 N PiPiya.

| Claim 1. RiR,--- Ry, is cyclic.

Proof. Since /P;R;P;iy1 = ZP;R;11P;41 = 90° for each i, we have PP; - PR; = PP, 1 - PR; 1,
meaning inversion at P with radius /PP; - PR;, which is fixed, sends the circumcircle of
PPy --- P, to that of Ri{Rs--- Rigo- (]

Claim 2. Q’iQ’i+l || RiR/L'Jrl for all i.

Proof. By Reim’s theorem on (P;R;R;11P;y1) and (P,—1P;Pit1Pit2), QiQit1 = Pi—1Pito |
RiRii1. 0

10
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Since P has a pedal circle in 51.55 - - - S1g0, the reflection @ over the center of the pedal circle
is the isogonal conjugate of P in S51.59---S100- Let T; be the foot from @ to P;—1P;y1, so that
there is a fixed circle through both R; and T; for all 4.

I Claim 3. AP,_1PPyp1 and AT;_1T;T;41 are homothetic.

Proof. By Reim’s theorem on (P,R;R;—1P,—1) and (R;T;T;—1R;—1), we have PP, || T;T;_1,
and similarly PiPZ'Jrl || TiTiJrl. Also PiSifl : PZ'Rifl = PzRZ : PZP = PiSZ-H : PZ'RZ‘+1, SO
Ri_lSi_lsiRiH is CyCliC, and P7;_1PZ'+1 H Ri—lRi—H by Reim’s theorem on (Ri_lsi_lsiRi_;_l)
and (Ri—1Ti—1Ti1Rit1). O

Claim 4. @ 1 QiQi—l—l for all 3.

Proof. Since S; is the orthocenter of APP;P; 1, we know PS; L P;P; ;. Note that S;P and
S;Q are isogonal wrt. ZP;S;P;11, and P;P;+1 and P;_1 P12 are isogonal, so Q5; 1. P;_1P; 1o, as
claimed. ]

I Claim 5. @, Q;, T; are collinear for all i.

Proof. By the parallel lines from Claim 3,

T:S;—1 _TiTin _ T _ T;S;
Si-iPi1 PPy PPy SiPiio

Hence a homothety at S sends AQ; P;_1 P;11 to AH;S;_1S; for some point H; with Q.S; | H;S;_1
and QS;_1 L H;S;. It follows that H; is the orthocenter of AQ;S;_1.5;, so H; lies on QT;. This
is sufficient, since H; € T;Q; by the homothety. O

From this, APR;R; 11 and AQQ;Q;+1 for each i, so RiRo--- Ry, ~ Q1Q2--- Q. Since the
former is cyclic, so is the latter, thus concluding the proof.
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