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TSTST 2019 Eric Shen (Last updated April 29, 2020)

§0 Problems

Problem 1. Find all binary operations ♦ : R>0 × R>0 → R>0 (meaning ♦ takes pairs of

positive real numbers) such that for any real numbers a, b, c > 0,

• the equation a♦ (b♦ c) = (a♦ b) · c holds; and

• if a ≥ 1 then a♦ a ≥ 1.

Problem 2. Let ABC be an acute triangle with circumcircle Ω and orthocenter H. Points D

and E lie on segments AB and AC respectively, such that AD = AE. The lines through B and

C parallel to DE intersect Ω again at P and Q, respectively. Denote by ω the circumcircle of

4ADE.

(a) Show that lines PE and QD meet on ω.

(b) Prove that if ω passes through H, then lines PD and QE meet on ω as well.

Problem 3. On an infinite square grid we place finitely many cars, which each occupy a single

cell and face in one of the four cardinal directions. Cars may never occupy the same cell. It

is given that the cell immediately in front of each car is empty, and moreover no two cars face

towards each other (no right-facing car is to the left of a left-facing car within a row, etc.). In

a move, one chooses a car and shifts it one cell forward to a vacant cell. Prove that there exists

an infinite sequence of valid moves using each car infinitely many times.

Problem 4. Consider coins with positive real denominations not exceeding 1. Find the smallest

C > 0 such that the following holds: if we are given any 100 such coins with total value 50,

then we can always split them into two stacks of 50 coins each such that the absolute difference

between the total values of the two stacks is at most C.

Problem 5. Let ABC be an acute triangle with orthocenter H and circumcircle Γ. A line

through H intersects segments AB and AC at E and F , respectively. Let K be the circumcenter

of 4AEF , and suppose line AK intersects Γ at a point D. Prove that line HK and the line

through D perpendicular to BC meet on Γ.

Problem 6. Suppose P is a polynomial with integer coefficients such that for every positive

integer n, the sum of the decimal digits of |P (n)| is not a Fibonacci number. Must P be

constant?

(A Fibonacci number is an element of the sequence F0, F1, . . . defined recursively by F0 = 0,

F1 = 1, and Fk+2 = Fk+1 + Fk for k ≥ 0.)

Problem 7. Let f : Z→ {1, 2, . . . , 10100} be a function satisfying

gcd
(
f(x), f(y)

)
= gcd

(
f(x), x− y

)
for all integers x and y. Show that there exist positive integers m and n such that f(x) =

gcd(m+ x, n) for all integers x.

Problem 8. Let S be a set of 16 points in the plane, no three collinear. Let χ(S) denote the

number of ways to draw 8 line segments with endpoints in S, such that no two drawn segments

intersect, even at endpoints. Find the smallest possible value of χ(S) across all such S.

Problem 9. Let ABC be a triangle with incenter I. Points K and L are chosen on segment

BC such that the incircles of 4ABK and 4ABL are tangent at P , and the incircles of 4ACK
and 4ACL are tangent at Q. Prove that IP = IQ.
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TSTST 2019 Eric Shen (Last updated April 29, 2020)

§1 TSTST 2019/1 (Evan Chen)

Problem 1

Find all binary operations ♦ : R>0 × R>0 → R>0 (meaning ♦ takes pairs of positive real

numbers) such that for any real numbers a, b, c > 0,

• the equation a♦ (b♦ c) = (a♦ b) · c holds; and

• if a ≥ 1 then a♦ a ≥ 1.

The answer is × and ÷. It is easy to check that these work. We now show these are the only

solutions.

Claim 1. If a♦ p = a♦ q, then p = q.

Proof. Check that

(a♦ a) · p = a♦ (a♦ p) = a♦ (a♦ q) = (a♦ a) · q,

whence p = q.

Claim 2. If p♦ a = q ♦ a, then p = q.

Proof. Check that

(a♦ p) · a = a♦ (p♦ a) = a♦ (q ♦ a) = (a♦ q) · a,

whence a♦ p = a♦ q and p = q.

Claim 3. a♦ 1 = a and 1♦ (1♦ a) = a.

Proof. For the first part, note that a♦ (a♦ 1) = (a♦ a) · 1 = a♦ a, so by Claim 1, a♦ 1 = a,

as desired. For the second part, check that 1♦ (1♦ a) = (1♦ 1) · a = a.

Claim 4. a♦ b = a · (1♦ b).

Proof. Check that

a♦ b = a♦
(
1♦ (1♦ b)

)
= (a♦ 1) · (1♦ b) = a · (1♦ b),

as requested.

Now, let f(b) = 1♦ b, so that a♦ b = af(b). Our given functional equation rewrites to

af
(
bf(c)

)
= acf(b) =⇒ f

(
bf(c)

)
= cf(b).

However, by Claim 1, f is injective, and by Claim 4, f is an involution, so plugging in f(c) as

c gives f(bc) = f(b)f(c). Hence, g(x) = ln f(ex) satisfies g(b + c) = g(b) + g(c). The second

condition implies that g(x) ≥ −x for all x ≥ 0, so g is bounded, and thus g(x) ≡ kx for some k.

It follows that f(x) ≡ xk, but substituting yields k = ±1. Hence, a ♦ b = a · b or a ÷ b, as

desired.
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§2 TSTST 2019/2 (Merlijn Staps)

Problem 2

Let ABC be an acute triangle with circumcircle Ω and orthocenter H. Points D and E lie

on segments AB and AC respectively, such that AD = AE. The lines through B and C

parallel to DE intersect Ω again at P and Q, respectively. Denote by ω the circumcircle

of 4ADE.

(a) Show that lines PE and QD meet on ω.

(b) Prove that if ω passes through H, then lines PD and QE meet on ω as well.

A

B C

H

L

P

Q

Y
D

E

X

S

T

Solution to part (a) Let X = PE∩QD. It is easy to see that ]APQ = ]ACQ = ]AED and

]PQA = ]PBA = ]EDA, whence 4ADE ∼ 4APQ, and A is the Miquel point of DEPQ.

Hence, X lies on both Ω and ω, as desired.

First solution to part (b), using reverse construction Let Y be the orthocenter of 4APQ
and set D = AB ∩ PY and E = AC ∩QY . Also let S = AQ ∩ PY and T = AP ∩QY .

Claim 1. AD = AE and Y lies on ω.

Proof. Since B̂Q = ĈP , 4ADS ∼= 4AET . It is immediate that AD = AE, and furthermore

]DY E = ]SY T = ]SAT = ]QAP = ]DAE,

as desired.

Claim 2. H lies on ω.

Proof. Let O be the center of Ω. Clearly AP = AQ, OP = OQ, and Y P = Y Q, so A,O, P lie

on the perpendicular bisector of PQ.

Now, if R denotes the radius of Ω, AH = 2R cos∠BAC = 2R cos∠QAP = AY , and further-

more AH and AY are isogonal, so H lies on ω, as desired.

Since D and E are unique, we are done.

4



TSTST 2019 Eric Shen (Last updated April 29, 2020)

Second solution to part (b), using complex numbers (Michael Ma) Let L be the midpoint of

arc B̂C not containing A. Toss on the complex plane, with lowercase letters denoting complex

numbers; set a = u2, b = v2, c = w2, and l = −vw. We first prove a crucial claim:

Claim. DH ‖ BL and EH ‖ CL.

Proof. This is just angle chasing.

∠ADH = 180◦ − ∠DHA− ∠HAD = 90◦ − ∠DEA+ ∠B = 1
2∠A+ ∠B = ∠ABL,

as desired.

Now, everything is computable. Since AM ⊥ BP , we have that

am+ bp = 0 =⇒ p = −am
b

=
u2w

v
,

and similarly q = u2v
w .

To compute d, note that we have D ∈ AB, so d = u2+v2−d
u2v2

. Furthermore, DH ‖ BL, so

d− h
b−m

∈ R =⇒ d− u2 − v2 − w2

v2 + vw
∈ R.

Now, we have that

d− u2 − v2 − w2

v2 + vw
=

u2+v2−d
u2v2

− 1
u2
− 1

v2
− 1

w2

1
v2

+ 1
vw

=⇒ d− u2 − v2 − w2 = v3w

(
− d

u2v2
− 1

w2

)
=⇒ d =

u2
(
u2w + v2w + w3 − v3

)
w (u2 + vw)

.

Similaly,

e =
u2
(
u2v + vw2 + v3 − w3

)
v (u2 + vw)

.

Notice that

d− p =
(w − v)

(
v3 − u2w

)
u2

vw (u2 + vw)
=⇒ −d− p

e− q
=
v2 − u2w
w2 − u2v

.

Finally, we want

x = −b− a
c− a

/
d− p
e− q

=

(
v2 − u2

) (
w3 − u2v

)
(w2 − u2) (v3 − u2w)

to be real, but

x =

(
u2 − v2

u2v2
· u

2v − w3

u2vw3

)/(
u2 − w2

u2w2
· u

2w − v3

u2v3w

)
= x,

and we are done.
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TSTST 2019 Eric Shen (Last updated April 29, 2020)

Third solution to part (b), using orthocenter reflections Let HB and HC denote the reflec-

tions of H across CA and AB respectively.

Claim 1. HC lies on PD and HB lies on QE.

Proof. Since 4ADE ∼ 4APQ,

]AHCD = ]DHA = ]DEA = ]AQP = ]AHCP,

as requested.

Claim 2. Let Y denote the reflection of H across the A-angle bisector. Y lies on ω and

also on PD and QE.

Proof. Clearly Y lies on ω, as DEYH is an isosceles trapezoid. Check that

]Y DE = ]Y AE = ]DAH = ]HCAB = ]HCPB = ]PDE,

as desired.

Hence, Y = PD ∩QE lies on ω, and we are done.
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TSTST 2019 Eric Shen (Last updated April 29, 2020)

§3 TSTST 2019/3 (Nikolai Beluhov)

Problem 3

On an infinite square grid we place finitely many cars, which each occupy a single cell and

face in one of the four cardinal directions. Cars may never occupy the same cell. It is

given that the cell immediately in front of each car is empty, and moreover no two cars

face towards each other (no right-facing car is to the left of a left-facing car within a row,

etc.). In a move, one chooses a car and shifts it one cell forward to a vacant cell. Prove

that there exists an infinite sequence of valid moves using each car infinitely many times.

Call a car horizontal if it is left-facing or right-facing, and vertical otherwise. Color the columns

black and white in an alternating manner.

Surround all the cars in a box. It is sufficient to show that the cars can all leave the box.

Perform the following procedure:

• Move all horizontal cars in a black column to a white column. This is possible because

the cell immediately in front of each car is empty.

• Clear the black columns of vertical cars. This is possible because all cars in a black column

must face the same direction.

• Move all the horizontal cars into black columns. This is possible because all vertical cars

in black columns have left.

• Clear the white columns of vertical cars, which is possible for similar reasons as above.

• Clear the box of horizontal cars, which must all face the same direction

With the box sufficiently big, all cars can move infinitely many times, as desired.
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TSTST 2019 Eric Shen (Last updated April 29, 2020)

§4 TSTST 2019/4 (Merlijn Staps)

Problem 4

Consider coins with positive real denominations not exceeding 1. Find the smallest C > 0

such that the following holds: if we are given any 100 such coins with total value 50, then

we can always split them into two stacks of 50 coins each such that the absolute difference

between the total values of the two stacks is at most C.

The answer is 50
51 . This is possible by giving 49 coins a value of 1 and 51 coins a value of 1

51 .

Now, suppose the values of the coins are denoted a1 ≤ a2 ≤ · · · ≤ a100. Call a gap between two

consecutive elements an and an+1 big if an+1 − an > 50
51 .

Claim. A gap can be big only if n = 50.

Proof. Assume that k < 50 is a big gap. Then, ai <
1
51 for all i ≤ k and ai >

50
51 for all i > k.

Hence,
100∑
i=1

ai >
50

51
(100− k) ≥ 50 · 51

51
= 50,

a contradiction. Similarly, if k > 50 is a big gap, then

100∑
i=1

ak <
1

51
k + (100− k) = 100− 50

51
k ≥ 100− 50 · 51

51
= 50,

the desired contradiction.

It is immediate that a50 ≤ 50
51 and a51 ≥ 1

51 . Consider

L = (a1 + a3 + · · ·+ a49) + (a52 + a54 + · · ·+ a100),

R = (a2 + a4 + · · ·+ a50) + (a51 + a53 + · · ·+ a99).

Compute that

L−R = a1 + (a3 − a2) + (a5 − a4) + · · ·+ (a49 − a48)
− a50 + (a52 − a51) + (a54 − a53) + · · ·+ (a100 − a99)

≥ a1 − a50 ≥ −
50

51
,

and

R− L = (a2 − a1) + (a4 − a3) + · · ·+ (a50 − a49) + a51

+ (a53 − a52) + (a55 − a54) + · · ·+ (a99 − a98)− a100

≥ a51 − a100 ≥ −
50

51
,

whence |L−R| ≤ 50
51 , and we are done.
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TSTST 2019 Eric Shen (Last updated April 29, 2020)

§5 TSTST 2019/5 (Gunmay Handa)

Problem 5

Let ABC be an acute triangle with orthocenter H and circumcircle Γ. A line through H

intersects segments AB and AC at E and F , respectively. Let K be the circumcenter of

4AEF , and suppose line AK intersects Γ at a point D. Prove that line HK and the line

through D perpendicular to BC meet on Γ.

First solution, by radical axes Let T lie on Γ with DT ⊥ BC, and let line TH intersect Γ

again at a point S 6= T .

Claim. Quadrilaterals BEHS and CFHS are cyclic.

Proof. This is just angle chasing:

]BSH = ]BDT = 90◦ − ]CBD = 90◦ − ]FAK = ]AEF = ]BEH,

as requested.

Now, ]KEF = 90◦ − ]FAE = ]EBH, so KE and KF are tangent to (BEHS) and

(CFHS), respectively. However, KE2 = KF 2, so K lies on line HS, and the desired conclusion

follows.

Second solution, by anti-Steiner points Denote by HA, HB, HC the reflections of H over

BC, CA, AB, respectively.

A

B C

H

K

E
F

D

T

S
HA

HB

HC

Claim 1. D is the anti-Steiner point of EHF , and DEKF is cyclic.

Proof. Let D′ = EHC ∩ FHB be the anti-Steiner point of EHF . First note that

]KED′ = ]KEA+ ]AED′ = 90◦ − ]AFE + ]AEHC

= 90◦ + ]EFA+ ]HEA = 90◦ + ]EFA+ ]FEA,
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TSTST 2019 Eric Shen (Last updated April 29, 2020)

which is symmetric, whence ]KED′ = 90◦+]EFA+]FEA = ]KFD′, and D′EKF is cyclic.

Now,

]AKE = 2]AFE = 2]AFH = ]HBFH = ]D′FE = ]D′KE,

so D′ ∈ AK, as required.

Claim 2. Let S be the Miquel point of EFHBHC ; S lies on line HK.

Proof. Check that
SE

SF
=
EHC

FHB
=
EH

FH
,

whence SH bisects ∠ESF and SH passes through K, the midpoint of arc EF on (DEKF ).

Claim 3. Quadrilaterals BEHS and CFHS are cyclic.

Proof. Notice that

]ESH = ]ESK = ]EFK = 90◦ − ]FAE = ]ABH = ]EBH,

so we are done by symmetry.

Finally, let line HK meet Γ at T 6= S. Note that

]ATH = ]ATS = ]ABS = ]EBS = ]EHS = ]FHT,

so AT ‖ EF . However, DHA is the reflection of EF over BC, so ]TAHA = ]EHA = ]AHAD,

and AD = THA. Thus, ATDHA is an isosceles trapezoid, and AHA ‖ DT . This completes the

proof.
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§6 TSTST 2019/6 (Nikolai Beluhov)

Problem 6

Suppose P is a polynomial with integer coefficients such that for every positive integer n,

the sum of the decimal digits of |P (n)| is not a Fibonacci number. Must P be constant?

(A Fibonacci number is an element of the sequence F0, F1, . . . defined recursively by

F0 = 0, F1 = 1, and Fk+2 = Fk+1 + Fk for k ≥ 0.)

The answer is yes.

Lemma 1

Fibonacci numbers are surjective modulo 9.

Proof. Omitted.

Lemma 2

Let n be the degree of P . The exists a (cubic) polynomial Q such that P (Q(x)) has x3n−1

as its only negative coefficient.

Proof. The key is that Q(x) = x3 + x + 1 almost works for P (x) = xn, except the x3n−1

coefficient is 0. Take large positive constants C and D, and consider

Q(x) = C(Dx3 − x2 +Dx+D).

With C sufficiently big, only the xn term of P matters, so Q works.

Now, for all sufficiently large k, consider P (Q(10k)). The coefficients will all be isolated,

besides the x3n−1 term. As we increase k, we increase the decimal digit sum of |P (Q(10k))| by

9, so there are a fixed b and c such that all numbers of the form 9a+b with a ≥ c are achievable.

Since Fibonacci numbers are periodic, we are done by Lemma 1.
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§7 TSTST 2019/7 (Ankan Bhattacharya)

Problem 7

Let f : Z→ {1, 2, . . . , 10100} be a function satisfying

gcd
(
f(x), f(y)

)
= gcd

(
f(x), x− y

)
for all integers x and y. Show that there exist positive integers m and n such that f(x) =

gcd(m+ x, n) for all integers x.

Let p ≤ 10100 be a prime. Set x such that νp
(
f(x)

)
is maximal, so that for all y,

νp
(
f(y)

)
= min

[
νp
(
f(x)

)
, νp(x− y)

]
.

It is immediate that all y of the form x + kpνp(f(x)) have maximal νp
(
f(y)

)
, so νp

(
f(y)

)
is

maximal when

y ≡ x
(

mod pνp(f(x))
)
. (∗)

By the Chinese Remainder Theorem, there exists negative z obeying (∗), so taking m = −z
and n = f(z) yields f(y) ≡ gcd(n, y +m), as desired.
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§8 TSTST 2019/8 (Ankan Bhattacharya)

Problem 8

Let S be a set of 16 points in the plane, no three collinear. Let χ(S) denote the number

of ways to draw 8 line segments with endpoints in S, such that no two drawn segments

intersect, even at endpoints. Find the smallest possible value of χ(S) across all such S.

The answer is 1430. Let Cn denote the minimum possible value of χ(S) when there are 2n

points.

Claim. Cn and χ(S) are related as follows:

(i) χ(S) ≥ Cn =
∑n−1

k=0 CkCn−1−k.

(ii) χ(S) = Cn when S is a convex 2n-gon.

Proof. Let A be a point on the convex hull of S, and let B be the other endpoint of the segment

incident to A. Suppose that line AB splits the plane into two half-planes containing k and

n− 1− k points respectively.

If k is odd, then there are clearly at least CkCn−1−k ways to draw the segments, so

χ(S) ≥
n−1∑
k=0

CkCn−1−k,

as requested. Equality occurs when S is a convex 2n-gon, as nothing can cross segment AB

and AB splits S into two convex sets.

Since C0 = C1 = 1, Cn is the nth Catalan number, so C8 = 1
9

(
16
8

)
= 1430, the answer.
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§9 TSTST 2019/9 (Ankan Bhattacharya)

Problem 9

Let ABC be a triangle with incenter I. Points K and L are chosen on segment BC such

that the incircles of 4ABK and 4ABL are tangent at P , and the incircles of 4ACK and

4ACL are tangent at Q. Prove that IP = IQ.

A

B CT
IB

IC

JB
JC

P

Q

K L

I

Let IB, JB, IC , and JC denote the incenters of 4ABK, 4ABL, 4ACL, and 4ACK, respec-

tively. Also let r4XY Z denote the inradius of 4XY Z for all X,Y, Z.

Lemma

For any points K and L on BC of 4ABC, if IB, JB, IC , and JC denote the incenters of

4ABK, 4ABL, 4ACL, and 4ACK, respectively, then IBIC , JBJC , and BC concur at

a point T .

Proof. Rotation by 1
2∠A about A gives

A(BIB; IJB) = A(IJC ;CIC) = A(CIC ; IJC),

and thus (BIB; IJB) = (CIC ; IJC) and the result follows.1

Considering the homothety centered at B sending (IB) to (JB), we can check that the scale

factor is
PJB
PIB

=
r4ABL
r4ABK

=
BJB
BIB

=⇒ −1 = (BP ; IBJB),

and similarly −1 = (CP ; ICJC). It is immediate that PQ also passes through T . By Menelaus

on 4IIBIC ,

−1 =
IP

PIB
· IBT
TIC

· ICQ
QI

=
IP

QI
· IBT
TIC

· ICQ
PIB

=
IP

QI
·
r4ABK
r4ACL

·
r4ACL
r4ABK

=
IP

QI
,

whence IP = IQ, as desired.
1Alternatively we can directly compute that

A(BIB ; IJB) =
sin 1

2
∠BAC · sin 1

2
∠KAL

sin 1
2
∠KAC · sin 1

2
∠BAL

= A(CIC ; IJC).
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