
Black Group Tests
MOP 2023

Eric Shen

July 17, 2023

Contents

1 Problems 1

1.1 MOP Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 MOP Test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 MOP Test 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 MOP Test 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 ELMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Mock IMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Solutions 5

2.1 Solutions to MOP Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Solutions to MOP Test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Solutions to MOP Test 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Solutions to MOP Test 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Solutions to ELMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Solutions to Mock IMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

§1 Problems

§1.1 MOP Test 1

Problem K1.1 (ISL 2022 G3). Let ABCD be a cyclic quadrilateral, and let P and Q be

points on line AB such that line AC is tangent to the circumcircle of △ADQ and line BD is

tangent to the circumcircle of △BCP . Let M and N be the midpoints of segments BC and

AD respectively. Prove that the tangent to the circumcircle of △ANQ at A and the tangent

to the circumcircle of △BMP at B intersect on line CD.

Problem K1.2 (ISL 2022 A4). Determine the largest constant c > 0 such that, for any integer

n ≥ 3 and for any reals x1, x2, . . ., xn in [0, 1] whose sum s is at least 3, there exist integers i

and j with 1 ≤ i < j ≤ n and

2j−ixixj > c · 2s.

Problem K1.3 (ISL 2022 N6). Prove that there exist a positive real c and a positive integer

N0 such that the following holds:

Let Q be any set of prime numbers. For each positive integer n,

• let p(n) denote the number of primes dividing n, counted with multiplicty, and
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• let q(n) denote the number of primes in Q dividing n, counted with multiplicity.

Then, for any positive integer N > N0, there exist at least cN positive integers n in

{1, . . . , N} such that p(n) + p(n+ 1) and q(n) + q(n+ 1) are both even.

§1.2 MOP Test 2

Problem K2.1 (ISL 2022 C4). Let n ≥ 3 be an integer. There are n coins distributed to n

children in a circle. At every step, a child with at least two coins gives one coin to each of their

neighbors. Determine all initial distributions of the coins such that it is possible for all children

to have exactly one coin after a finite number of steps.

Problem K2.2 (ISL 2022 G6). Let ABC be an acute triangle and let H be the foot from A

to BC. Let P be a variable point such that the internal angle bisectors k and ℓ of ∠PBC and

∠PCB, respectively, meet on AH. Let k meet AC at E, ℓ meet AB at F , and EF and AH at

Q. Prove that as P varies, line PQ passes through a fixed point.

Problem K2.3 (ISL 2022 A5). Find all integers n ≥ 2 for which there exists real numbers

a1 < · · · < an such that the
(
n
2

)
numbers of the form aj − ai (for 1 ≤ i < j ≤ n) can be

rearranged to form a geometric progression.

§1.3 MOP Test 3

Problem K3.1 (ISL 2022 N2). Find all integers n ≥ 3 such that n! divides the product∏
p<q≤n

p, q prime

(p+ q).

Problem K3.2 (ISL 2022 G4). Let ABC be an acute scalene triangle with circumcenter O,

and let D be a point on side BC. The line through D perpendicular to BC meets lines AO, AC,

and AB at W , X, and Y , respectively. The circumcircles of △AXY and △ABC intersect again

at Z ̸= A. Prove that if W ̸= D and OW = OD, then line DZ is tangent to the circumcircle

of △AXY .

Problem K3.3 (ISL 2022 C9). Let Z≥0 denote the set of nonnegative integers, and let f :

Z2
≥0 → Z≥0 be a bijection such that for any four nonnegative integers x1, x2, y1, y2 satisfying

f(x1, y1) > f(x2, y2), it holds that f(x1+1, y1) > f(x2+1, y2) and f(x1, y1+1) > f(x2, y2+1).

Let N be the number of integer pairs (x, y) with 0 ≤ x, y < 100 for which f(x, y) is odd. As

f varies, determine the smallest and largest possible value of N .

§1.4 MOP Test 4

Problem K4.1 (ISL 2022 N3). Let a ≥ 2 and d ≥ 2 be relatively prime integers. Let x1 = 1

and for k ≥ 1, define

xk+1 =

{
xk + d if a doesn’t divide xk,

xk/a if n divides xk.

Find the greatest positive integer n for which some term of the sequence is divisible by an.

Problem K4.2 (ISL 2022 C6). At MOP, there are a finite number of students who are grouped

into different classrooms. At every step, Po may remove an equal number of students from two

classrooms and put them all in a new empty classroom. Determine, in terms of the initial

grouping, the smalest possible number of nonempty classrooms he can obtain after a finite

number of steps.
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Problem K4.3 (ISL 2022 A7). Let s(m) denote the sum of the digits of a positive integer m.

Determine whether there exists a polynomial P (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, for some

n ≥ 2, such that

• a0, a1, . . ., an−1 are positive integers, and

• for all positive integers k, s(k) + s(P (k)) is even.

§1.5 ELMO

Problem ELMO1 (Raymond Feng). Let m be a positive integer. Find, in terms of m, all

polynomials P (x) with integer coefficients such that for every integer n, there exists an integer

k such that P (k) = nm.

Problem ELMO2 (Raymond Feng). Let a, b, and n be positive integers. A lemonade stand

owns n cups, all of which are initially empty. The lemonade stand has a filling machine and an

emptying machine, which operate according to the following rules:

• If at any moment, a completely empty cups are available, the filling machine spends the

next a minutes filling those a cups simultaneously and doing nothing else.

• If at any moment, b completely full cups are available, the emptying machine spends the

next b minutes emptying those b cups simultaneously and doing nothing else.

Suppose that after a sufficiently long time has passed, both the filling machine and emptying

machine work without pausing. Find, in terms of a and b, the least possible value of n.

Problem ELMO3 (Holden Mui). Convex quadrilaterals ABCD, A1B1C1D1, and A2B2C2D2

are similar with vertices in order. Points A, A1, B2, B are collinear in order, points B, B1,

C2, C are collinear in order, points C, C1, D2, D are collinear in order, and points D, D1,

A2, A are collinear in order. Diagonals AC and BD intersect at P , diagonals A1C1 and B1D1

intersect at P1, and diagonals A2C2 and B2D2 intersect at P2. Prove that points P , P1, and P2

are collinear.

Problem ELMO4 (Luke Robitaille). Let ABC be an acute scalene triangle with orthocenter

H. Line BH intersects AC at E and line CH intersects AB at F . Let X be the foot of the

perpendicular from H to the line through A parallel to EF . Point B1 lies on line XF such that

BB1 is parallel to AC, and point C1 lies on line XE such that CC1 is parallel to AB. Prove

that points B, C, B1, C1 are concyclic.

Problem ELMO5 (Karthik Vedula). Find the least positive integer M for which there exist

a positive integer n and polynomials P1(x), P2(x), . . ., Pn(x) with integer coefficients satisfying

Mx = P1(x)
3 + P2(x)

3 + · · ·+ Pn(x)
3.

Problem ELMO6 (Brandon Wang, Edward Wan). For a set S of positive integers and a

positive integer n, consider the game of (n, S)-nim, which is as follows. A pile starts with n

watermelons. Two players, Deric and Erek, alternate turns eating watermelons from the pile,

with Deric going first. On any turn, the number of watermelons eaten must be an element of

S. The last player to move wins. Let f(S) denote the set of positive integers n for which Deric

has a winning strategy in (n, S)-nim.

Let T be a set of positive integers. Must the sequence

T, f(T ), f(f(T )), . . .

be eventually constant?
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§1.6 Mock IMO

Problem MIMO1 (ISL 2022 A2). Let k ≥ 2 be an integer. A nonempty set S of real numbers

has the property that every element s ∈ S can be written as the sum of k distinct elements of

S that are not equal to s. Find the smallest possible value of |S|, in terms of k.

Problem MIMO2 (ISL 2022 A6). Find all rational numbers q for which there exists a function

f : R → R satisfying

f(x+ f(y)) = f(x) + f(y) and f(z) ̸= qz

for all real numbers x, y, z.

Problem MIMO3 (ISL 2022 G8). Let AA′BCC ′B′ be a convex cyclic hexagon such that line

AC is tangent to the incircle of △A′B′C ′ and line A′C ′ is tangent to the incircle of △ABC.

Let lines AB and A′B′ intersect at X and let lines BC and B′C ′ intersect at Y . Prove that if

XBY B′ is a convex quadrilateral, then it has an incircle.

Problem MIMO4 (ISL 2022 G2). Point P lies in the interior of acute triangle ABC such

that lines AP and BC are perpendicular. Points D and E on side BC satisfy PD ∥ AC and

PE ∥ AB, and points X ̸= A and Y ̸= A lie on the circumcircles of △ABD and △ACE,

respectively, such that DA = DX and EA = EY . Prove that points B, C, X, and Y are

concyclic.

Problem MIMO5 (ISL 2022 N5). For each 1 ≤ i ≤ 9 and positive integer T , let di(T ) denote

the total number of times the digit i appears when all multiples of 2023 between 1 and T

inclusive are written out in base 10. Prove that there are infinitely many positive integers T

such that there are exactly two distinct values among d1(T ), d2(T ), . . ., d9(T ).

Problem MIMO6 (ISL 2022 C7). Let s be a positive integer. Lucy and Lucky play the

following game on a blackboard. Lucy initially writes s integer-valued 2023-tuples on the board.

Lucky then gives Lucy an integer-valued 2023-tuple. Afterwards, Lucy can repeatedly take any

two (not necessarily distinct) tuples (v1, . . . , v2023) and (w1, . . . , w2023) on the blackboard and

writes the tuples

(v1 + w1, . . . , v2023 + w2023) and (max(v1, w1), . . . ,max(v2023, w2023)

on the board. Lucy wins if she can write Lucky’s tuple on the board in a finite number of steps.

Determine the smallest value of s for which Lucy has a winning strategy.
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§2 Solutions

§2.1 Solutions to MOP Test 1

K1.1 — ISL 2022 G3

Let ABCD be a cyclic quadrilateral, and let P and Q be points on line AB such that line AC is tangent

to the circumcircle of △ADQ and line BD is tangent to the circumcircle of △BCP . Let M and N be the

midpoints of segments BC and AD respectively. Prove that the tangent to the circumcircle of △ANQ

at A and the tangent to the circumcircle of △BMP at B intersect on line CD.

Let the tangent to (ANQ) at A intersect (ADQ) at S. Then ∡DQS = ∡NAS = ∡NQA

implies QS is a symmedian of △ANQ, hence

−1 = (AD;QS)
A
= (C,D;AB ∩ CD,AS ∩ CD).

Symmetrically, we conclude AS and the corresponding tangent at B both intersect at the

harmonic conjugate of AB ∩ CD with respect to CD.

K1.2 — ISL 2022 A4

Determine the largest constant c > 0 such that, for any integer n ≥ 3 and for any reals x1, x2, . . ., xn in

[0, 1] whose sum s is at least 3, there exist integers i and j with 1 ≤ i < j ≤ n and

2j−ixixj > c · 2s.

The answer is c = 1
8 .

Take i and j so that 2j−ixixj is maximal; then 2−ixi is maximal for all choices of i < j and

2jxj is maximal for all choices of j > i. We will make changes without increasing 2j−ixixj ·2−s.

Note that:

• We may always increase xk for k < i to 2k−ixi, as this only increases s without affecting

the optimality of the choice of (i, j), and thus does not increase maxi,j 2
j−ixixj · 2−s.

• Similarly, we may always increase xk for k > j to 2j−kxj .

• Additionally, we may extend the sequence indefinitely in both directions, and increase

such terms in accordance with the previous two bullet points.

• Similarly, we may always increase xk for i < k < j to min{1, 2k−ixi, 2
j−kxi}.

• While j − i ≥ 2 and xi ≤ 1
2 , we have xi+1 = 2xi and hence we may replace i with i + 1

without changing the value of 2j−ixixj .

• Similarly while j − i ≥ 2 and xj ≤ 1
2 , we may replace j with j − 1.

Hence our sequence looks like (for large ℓ)

2−ℓxi, , . . . , 2
−1xi, xi, 1, . . . , 1︸ ︷︷ ︸

t ones

, xj , 2
−1xj , . . . , 2

−ℓxj .

Then we have s → 2xi + 2xj + t and j − i = t+ 1, so

2j−ixixj · 2−s >
2t+1xixj
22xi+2xj+t = 2 · xi

4xi
· xj
4xj

≥ 2 · 1
4
· 1
4
=

1

8
,
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since xi, xj ∈ [1/2, 1].

We achieve c → 1/8 by taking ℓ → ∞ in the sequence

2−ℓ, 2−ℓ+1, . . . , 2−2, 2−1, 20, 2−1, 2−2, . . . , 2−ℓ+1, 2−ℓ.

K1.3 — ISL 2022 N6

Prove that there exist a positive real c and a positive integer N0 such that the following holds:

Let Q be any set of prime numbers. For each positive integer n,

• let p(n) denote the number of primes dividing n, counted with multiplicty, and

• let q(n) denote the number of primes in Q dividing n, counted with multiplicity.

Then, for any positive integer N > N0, there exist at least cN positive integers n in

{1, . . . , N} such that p(n) + p(n+ 1) and q(n) + q(n+ 1) are both even.

For each positive integer N , consider

S = {5040N, 5040N + 70, 5040N + 72, 5040N + 75, 5040N + 80}.

There are 4 possible values of {p(n) mod 2, q(n) mod 2}, so by Pigeonhole, there are distinct a

and b in S with p(a) ≡ p(b) (mod 2) and q(a) ≡ q(b) (mod 2).

But S is constructed with the property that for any a < b in S, b − a divides both a and b.

Hence

p

(
a

b− a

)
+ p

(
b

b− a

)
= p(a) + p(b)− 2p(b− a) ≡ 0 (mod 2),

and similarly

q

(
a

b− a

)
+ q

(
b

b− a

)
≡ 0 (mod 2).

Since a
b−a and b

b−a are one apart, each N generates a valid n.

Hence for each M , the first M choices of N generate M different n up to 5040N + 80. Each

value of n is counted at most
(
5
2

)
times, so any c < 1

50400 works.

§2.2 Solutions to MOP Test 2

K2.1 — ISL 2022 C4

Let n ≥ 3 be an integer. There are n coins distributed to n children in a circle. At every step, a child

with at least two coins gives one coin to each of their neighbors. Determine all initial distributions of

the coins such that it is possible for all children to have exactly one coin after a finite number of steps.

Label the children 1, 2, . . ., n and let them have a1, a2, . . ., an coins, respectively (with

indices modulo n). Note that a1 + 2a2 + · · · + nan is invariant modulo n, so for the desired

distribution to be reachable, we must have

n

∣∣∣∣∣
n∑

i=1

i(ai − 1). (⋆)

We show that if the initial distribution satisfies the above, then the desired distribution is

reachable.
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Choose integers d1, . . ., dn such that

xi − 1 = di − di+1 for all i.

With (⋆), we can check that n | d1 + · · · + dn, so by shifting di appropriately, we may set

d1 + · · ·+ dn = 0.

Then we may choose integers a1, . . ., an such that

di = ai − ai−1 for all i and min
i

ai = 0.

Thus we have nonnegative integers a1, . . ., an with

xi − 1 = 2ai − ai−1 − ai+1 for all i.

While there exists i with xi ≥ 2, note that

1 ≤ xi − 1 ≤ 2ai =⇒ ai ≥ 1,

so decrease ai by 1. This is equivalent to decreasing xi by 2 and increasing xi−1 and xi+1 by 1.

Do this until xi ≤ 1 for all i, and of course equality holds.

K2.2 — ISL 2022 G6

Let ABC be an acute triangle and let H be the foot from A to BC. Let P be a variable point such that

the internal angle bisectors k and ℓ of ∠PBC and ∠PCB, respectively, meet on AH. Let k meet AC

at E, ℓ meet AB at F , and EF and AH at Q. Prove that as P varies, line PQ passes through a fixed

point.

Let D = k∩ℓ, and let Z be the intersection of the reflection of BC over AB and the reflection

of BC over CA. Then A is an incenter or excenter of △ZBC and D is an incenter or excenter of

△PBC. We assume both are incenters without loss of generality (the other cases are analogous).

We show Z is the fixed point.

If we define Q′ = ZP ∩ AD, we wish to show Q′ is collinear with E = AC ∩ DB and

F = AB ∩DC. By Ceva-Menelaus, we wish to show:

Let ZBPC be a quadrilateral. Let ωA and ωD be the incircles and A and D the

incenters of △ZBC and △PBC, respectively. If ωA and ωD are tangent at a point

H on BC, then Q′ = ZP ∩AD satisfies (AD;HQ′) = −1.

Z

B C

P

A

D

Q′

H

7
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Note that

ZB +BC − ZC

2
= BH =

PB +BC − PC

2
=⇒ ZB − ZC = PB − PC,

so ZBPC has an incircle ω by Pitot.

Note that H is the insimilicenter of ωA and ωD. By Monge on ω, ωA, ωD, the exsimilicenter

is Q′. The desired harmonic bundle follows.

Remark. Another proof is to draw the hyperbola H with foci B and C through Z, H, P , and note

that A = ZZ ∩ PP and D = HH ∩ PP . Then the desired harmonic bundle follows from duality.

This also works as a standalone proof by initially setting H as the hyperbola with foci B and C

through H and P , and identifying Z as the intersection of the second tangent from A to H.

Remark. The fixed point Z = AO ∩ (OBC) may be identified by the following:

• Setting D → A gives that the fixed point lies on AO.

• Setting D as the reflection of A over BC gives that the fixed point lies on the line through

AO ∩ (OBC) perpendicular to BC.

Remark. The problem is also not hard to coordinate bash. Perhaps this is slightly more difficult

if the fixed point is actually provided in the problem statement.

K2.3 — ISL 2022 A5

Find all integers n ≥ 2 for which there exists real numbers a1 < · · · < an such that the
(
n
2

)
numbers of

the form aj − ai (for 1 ≤ i < j ≤ n) can be rearranged to form a geometric progression.

The answer is n ≤ 4, constructed as follows:

• For n = 2, take a2 − a1 = 1.

• For n = 3, take a2 − a1 = 1 and a3 − a2 = x, where x2 = x+ 1.

• For n = 4, take a2 − a1 = 1, a3 − a2 = x, and a4 − a3 = x2, where x3 = x+ 1.

It suffices to show n ≤ 4 is necessary.

By scaling, let the
(
n
2

)
differences be 1, x, x2, . . ., x(

n
2)−1, where x > 1. For 0 ≤ k ≤

(
n
2

)
− 1,

let Ik = [Lk, Rk] such that aRk
− aLk

= xk, and let dk = Rk − Lk.

Claim 1. Ik and Ik+1 share at least a point for each k.

Proof. Assume for contradiction there is an interval Iℓ of positive length between the closest

endpoints of Ik and Ik+1, and let Iu = Ik ∪ Iℓ and Iv = Ik+1 ∪ Iℓ.

Of course v > u > k + 1, but

xk+1 − xk = xv − xu ≥ xu+1 − xu > xk+1 − xk,

contradiction.

Of course d0 = d1 = 1. Let r be minimal such that dr > 1.

8
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Claim 2. r ≤ 3 and xr = x+ 1.

Proof. Since Ik and Ik+1 share a point for each k and dk = 1 for k < r, the intervals I0, I1, . . .,

Ir−1 appear in order.

The smallest interval of length greater than 1 is I0 ∪ I1, so Ir = I0 ∪ I1, implying xr = x+ 1.

Moreover, we readily have Ir+1 = I1 ∪ I2, . . ., I2r−2 = Ir−2 ∪ Ir−1.

Therefore if Is = I0 ∪ I1 ∪ I2, then s ≥ 2r − 1, so we have

1 + x+ x2 = xs ≥ x2r−1.

In particular,

x+ x2 + x3 ≥ x2r = (x+ 1)2 =⇒ x3 ≥ x+ 1 = xr,

so r ≤ 3.

Claim 3. n = r + 1.

Proof. As previously established, the intervals I0, I1, . . ., Ir−1 appear in order, so n ≥ r + 1.

Let R =
(
r+1
2

)
. We may check in both cases r = 2 and r = 3 the R differences induced by

the r+1 endpoints of I0, . . ., Ir−1 induce the
(
R
2

)
differences 1, x, x2, . . ., xR−1. (In particular,

IR−1 = I0 ∪ I1 ∪ · · · ∪ Ir−1.)

If n ≥ r+2, then it is necessary to locate IR, which must intersect IR−1. But if IR−1 intersects

IR at an interval It of positive length, then xR − xt, the length of the interval IR \ It, must be

a power of x less than xR. But we have identified all intervals of such length, contradiction.

Thus IR intersects IR−1 at an endpoint. But then:

• If IR intersects IR−1 at an endpoint in I0, then the intervals IR ∪ I0, IR ∪ I0 ∪ I1, . . .,

IR ∪ I0 ∪ · · · ∪ Ir−2 must all have length strictly between xR and xR + xR−1 = xR−1+r,

but there are only r− 2 distinct possible interval lengths strictly between xR and xR−1+r,

contradiction.

• If IR intersects IR−1 at an endpoint in Ir−1, we derive a similar contradiction with the

intervals IR ∩ Ir−1, . . ..

Since r ≤ 3, we have n ≤ 4.

§2.3 Solutions to MOP Test 3

K3.1 — ISL 2022 N2

Find all integers n ≥ 3 such that n! divides the product∏
p<q≤n

p, q prime

(p+ q).

The answer is n = 7, which works. We may manually check all other n ≤ 10 fail, and proceed

to show n ≥ 11 fail as well.

Let r ≥ 11 be the largest prime at most n. It suffices to show

r! does not divide
∏

p<q≤r

(p+ q).

Assume for contradiction r! does divide the product.

9
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Claim 1. r − 2 is prime.

Proof. Since p+ q < 2r, the only way for a factor of r to appear in the product is if p+ q = r,

forcing (p, q) = (2, r − 2). Hence r − 2 must be prime.

Claim 2. r − 4 is prime.

Proof. Since p+ q < 3(r − 2), the only ways for a factor of r − 2 to appear in the product is if

p+ q = r − 2 or p+ q = 2(r − 2).

• In the former case, we must have (p, q) = (2, r − 4), so r − 4 is prime.

• In the latter case, note if q ≤ r−2 then p+q < 2(r−2), so we must have (p, q) = (r−4, r).

In particular, r − 4 is prime.

But for r ≥ 11, it is absurd for r, r − 2, r − 4 to be prime.

K3.2 — ISL 2022 G4

Let ABC be an acute scalene triangle with circumcenter O, and let D be a point on side BC. The

line through D perpendicular to BC meets lines AO, AC, and AB at W , X, and Y , respectively. The

circumcircles of △AXY and △ABC intersect again at Z ̸= A. Prove that if W ̸= D and OW = OD,

then line DZ is tangent to the circumcircle of △AXY .

Let A′, B′, C ′ be the antipodes of A, B, C, so W lies on B′C ′. Let Z ′ and HA lie on (ABC)

with AHA ⊥ BC and AZ ∥ BC.

By Pascal on HAZ
′C ′BCA, the line through D perpendicular to BC contains Z ′C ′ ∩CA, so

X ∈ Z ′C ′. Similarly Y ∈ Z ′B′. Moreover

∡Y Z ′X = ∡B′ZC ′ = ∡BAC = ∡Y AX,

so Z ′ ∈ (AXY ) and thus Z = Z ′.

Finally Z is the Miquel point of BCXY , so Z also lies on (Y BD) and (XCD). Then

∡DZX = ∡DCX = ∡ZAC = ∡ZY X,

implying DZ is tangent to (XY Z), as desired.

K3.3 — ISL 2022 C9

Let Z≥0 denote the set of nonnegative integers, and let f : Z2
≥0 → Z≥0 be a bijection such that for any

four nonnegative integers x1, x2, y1, y2 satisfying f(x1, y1) > f(x2, y2), it holds that f(x1 + 1, y1) >

f(x2 + 1, y2) and f(x1, y1 + 1) > f(x2, y2 + 1).

Let N be the number of integer pairs (x, y) with 0 ≤ x, y < 100 for which f(x, y) is odd. As f varies,

determine the smallest and largest possible value of N .

The minimum and maximum values are 2500 and 7500 respectively.

Proof of bounds: Note that f(x, y) < f(x+ 1, y) for all x and y, else

f(x, y) > f(x+ 1, y) > f(x+ 2, y) > · · ·

10
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which is absurd. Similarly f(x, y) < f(x, y + 1).

Consider the process of placing the elements of Z≥0 in the cells of Z2
≥0 in the order 0, 1, 2,

. . ., so that n is placed in cell (x, y) when f(x, y) = n. In this process, when n is placed in

(x, y), then the cells (x − 1, y) and (x, y − 1) must already have been labeled, or they will be

filled with a smaller number, contradicting the above. Hence the set of labeled cells will always

form a “chomp-like” structure.

Claim 3. Consider the moment cell (x, y) is filled with f(x, y) = n, and let f(x, y−1) = m.

In every other column with a positive number of labeled cells, exactly one cell was labeled

between when m and n were labeled.

Proof. We simply check that:

• If some nonempty column had no cell filled during this time, and its top cell is f(x′, y′) <

m, then the cell (x′, y′ + 1) must be filled eventually, so f(x′, y′ + 1) > n. This is a clear

contradiction.

• If some nonempty column was filled twice, then its top two cells must satisfy m <

f(x′, y′) < n and m < f(x′, y′ + 1) < n. This is again a clear contradiction.

Analogously, we have the reflected version of the above claim.

Claim 4. We always have

f(x, y) + f(x+ 1, y + 1) = f(x+ 1, y) + f(x, y + 1) + 1.

Proof. Without loss of generality f(x, y + 1) > f(x+ 1, y). By Claim 1,

f(x, y + 1)− f(x, y) = # nonempty columns when f(x, y + 1) placed

and f(x+ 1, y + 1)− f(x+ 1, y) = # nonempty columns when f(x+ 1, y + 1) placed.

Hence it suffices to show that between when f(x, y + 1) and f(x + 1, y + 1) are placed, the

number of nonempty columns increases by exactly once.

But by the reflected version of Claim 1, we note that the bottom row increases by exactly

one square between when f(x, y + 1) and f(x + 1, y + 1) are placed. Since the cells form a

chomp-like structure, this proves the claim.

Hence in any 2 × 2 square, there is either 1 or 3 odd terms. This readily establishes the

bounds of 2500 and 7500.

Constructions: We show:

Claim 5. Where r < n below, the function

f(qn+ r, y) = [1 + 2 + · · ·+ (q + y)]n+ q + (q + y + 1)r

works.

Proof. It is clear f is a bijection: for each m, we may find a unique value of s ≥ 0 with

m = (1 + 2 + · · ·+ s)n+R, where R < (s+ 1)n,

and pick q ≡ R (mod s+ 1) with 0 ≤ q ≤ s, y = s− q, and r = ⌊ R
s+1⌋ < n.

11
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Then we may check that

f(qn+ r, y + 1)− f(qn+ r, y) = (q + y + 1)n+ r

= (s+ 1)n+

⌊
R

s+ 1

⌋
and f(qn+ r + 1, y)− f(qn+ r, y) =

{
q + y + 1 if r ≤ n− 2

q + y + 2 if r = n− 1

=

{
s+ 1 if R < (n− 1)(s+ 1)

s+ 2 if R ≥ (n− 1)(s+ 1)

are increasing functions in m, which is sufficiently to verify the requested condition on f .

Claim 6. Where r < n below, the function

f(qn+ r, y) = [1 + 2 + · · ·+ (q + y)]n+ y + (q + y + 1)r

works.

Proof. The proof is analogous to the above, where instead we verify

f(qn+ r, y + 1)− f(qn+ r, y) = (q + y + 1)n+ r + 1

= (s+ 1)n+

⌊
R

n+ 1

⌋
+ 1

and f(qn+ r + 1, y)− f(qn+ r, y) = q + y + 1 = s+ 1

are increasing.

Now taking n ≫ 100 even in Claim 3 gives f(x, y) ≡ x(y + 1) (mod 2) and n ≫ 100 even in

Claim 4 gives f(x, y) ≡ (x−1)(y−1)−1 (mod 2). The former is odd 2500 times and the latter

is odd 7500 times.

Remark. The above solution is entirely combinatorial, in contrast to the more analytical official

solution, which analyzes all vectors (k, ℓ) based on whether f(x, y) < f(x + k, y + ℓ) or f(x, y) >

f(x + k, y + ℓ) and finds that the vectors of the former and latter types are divided by a single

slope. It then comes to the following characterization of f :

For some α, f sorts (x, y) based on the value of x+ yα. (For α rational, tiebreaking is

done by larger x- or y-coordinate, depending on the nature of f .)

We also have the more explicit expression

f(x, y) = xy +

a∑
i=1

⌈
i

α

⌉
+

b∑
j=1

⌈jα⌉.

Claim 2 follows from this and thus the bound. We may construct 2500 by setting α ≈ 199.999 and

7500 by setting α ≈ 200.001.

§2.4 Solutions to MOP Test 4

K4.1 — ISL 2022 N3

12
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Let a ≥ 2 and d ≥ 2 be relatively prime integers. Let x1 = 1 and for k ≥ 1, define

xk+1 =

{
xk + d if a doesn’t divide xk,

xk/a if n divides xk.

Find the greatest positive integer n for which some term of the sequence is divisible by an.

The answer is ⌊loga(ap)⌋.

Claim 1. We have xk < ad for all k.

Proof. Starting from a number less than d, we can increase by d at most a − 1 times before

encountering a multiple of a. This multiple of a is less than ad, and after dividing by a, we end

up less than d again.

Of course the above claim establishes the upper bound.

Claim 2. We have xk = 1 for some k > 1.

Proof. The function f : {1, 2, . . . , d− 1} → {1, 2, . . . , d− 1} defined by

f(n) =
n+ ℓd

a
∈ Z where ℓ ≥ 0 minimal

is a bijection with inverse f−1(m) = am mod d. Hence fk(1) = 1 for some k.

Evidently for each i, there is a j > i with f(xi) = xj . Hence there is a k > 1 with xk = 1.

Let the elements before 1 in the sequence be

. . . , ar − d, ar, ar−1, . . . , 1.

Then we must have ar ∈ (d, ad), which uniquely determines ar. The problem follows.

K4.2 — ISL 2022 C6

At MOP, there are a finite number of students who are grouped into different classrooms. At every

step, Po may remove an equal number of students from two classrooms and put them all in a new

empty classroom. Determine, in terms of the initial grouping, the smalest possible number of nonempty

classrooms he can obtain after a finite number of steps.

Let n be the total number of students and let t be the greatest odd divisor of n. The answer

is 1 if t divides the number of students in each class and 2 otherwise.

Remark. The intended solution goes along the lines of splitting the classes into groups of size

powers of two, and then combining them. However, the below solution still works and is stronger.

We cite the following problem:

Lemma (ISL 1994 C3)

Peter has three accounts in a bank, each with an integral number of dollars. He is only

allowed to transfer money from one account to another so that the amount of money in the

latter is doubled. Prove that Peter can always transfer all his money into two accounts.

13
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While there are at least three classrooms, Po can take any three of them and rearrange them

into two classrooms. Thus Po can arrange all the students into two classrooms. It suffices to

show that arranging the students into one classroom is possible if and only if t divides all the

class sizes.

Proof of necessity: If initially there is a class whose size is not divisible by t, then there

will always be a class whose size is not divisible by t. Thus we cannot ever have a single class

of size n.

Proof of sufficiency: Divide all sizes by t, so we may assume n = 2k is a power of 2. As

above, arrange the students into two classes. Then if the classes have positive size a and b, we

must have ν2(a) = ν2(b).

Then the operation (a, b) 7→ (2a, b − a) increments ν2(a) = ν2(b) until it no longer less than

k, at which point (a, b) = (0, 2k) and we are done.

K4.3 — ISL 2022 A7

Let s(m) denote the sum of the digits of a positive integerm. Determine whether there exists a polynomial

P (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, for some n ≥ 2, such that

• a0, a1, . . ., an−1 are positive integers, and

• for all positive integers k, s(k) + s(P (k)) is even.

The answer is no. We claim:

Claim. There are large positive integers C and D such C ≫ D ≫ 0 such that if

Q(x) = Cx4 + Cx3 −Dx2 + Cx+ C,

then the polynomial P (Q(x)) has all coefficients positive.

Proof. Note that (x4 + x3 + x + 1)n has terms of all degrees 0, 1, . . . , x4n with coefficients at

least 1.

Then the modification (x4+x3− εx2+x+1)n decreases coefficients by a polynomial amount

in ε which tends to 0 as ε → 0+, so there is a sufficiently small choice of ε for which the signs

of the coefficients of (x4 + x3 + x+ 1)n are not affected.

Then for large C and D ≈ Cε, we may set Q(x) = Cx4+Cx3−Dx2+Cx+1, and the Q(x)n

term dominates.

Then for r greater than the number of digits in all the coefficients of Q and P ◦ Q, we may

find constants a and b such that

s(Q(10r)) = 9r + a and s(P (Q(10r))) = b

since incrementing r creates an additional digit of 9 in Q(10r) generated by the x2 term and no

additional nonzero digits in P (Q(10r)). Then one of k = 10r and k = 10r+1 must fail.

Remark. Derek Liu claims an approach where you take massive J ≡ 25 (mod 100) such that

an−1Jn−1 has a leading digit of 6, and pick appropriate r such that in P (J · 10r), the akJ
k terms

are roughly concatenated. If we repick r such that the anJn and an−1Jn−1 terms intersect at one

digit, then 2 + 5 + 6 turns into 3 + 1, with different parity.

14
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§2.5 Solutions to ELMO

ELMO1 — ELMO 2023/1

Let m be a positive integer. Find, in terms of m, all polynomials P (x) with integer coefficients such that

for every integer n, there exists an integer k such that P (k) = nm.

For any positive d | n, the polynomials P (x) = (x + a)d and P (x) = (−x + a)d work. We

show they are the only solutions.

First, there exists k0 so that P (k0) = 0m. Instead consider the polynomial Q(x) = P (x−k0),

which has 0 as a root and but still contains every mth power in its range. We will show that

Q(x) is of the form either xd or (−x)d for some d | n.
For each prime p, there is some kp with Q(kp) = pm. Since 0 is a root of Q, we have x | Q(x)

for every x. In particular, kp | P (kp) = pm. This implies that

kp ∈ {1, p, p2, . . . , pm,−1,−p,−p2, . . . ,−pm} for all p.

By the Pigeonhole principle, one of the following must occur:

• There is some 0 ≤ r ≤ m such that kp = pr for infinitely many p. In particular, Q(xr) =

xm infinitely often, implying it holds for all real x, so Q(x) = xm/r for all x.

• There is some 0 ≤ r ≤ m such that kp = −pr for infinitely many p. In particular,

Q(−xr) = xm infinitely often, implying it holds for all real x, so Q(x) = (−x)m/r for all

x.

This completes the proof.

ELMO2 — ELMO 2023/2

Let a, b, and n be positive integers. A lemonade stand owns n cups, all of which are initially empty.

The lemonade stand has a filling machine and an emptying machine, which operate according to the

following rules:

• If at any moment, a completely empty cups are available, the filling machine spends the next a

minutes filling those a cups simultaneously and doing nothing else.

• If at any moment, b completely full cups are available, the emptying machine spends the next b

minutes emptying those b cups simultaneously and doing nothing else.

Suppose that after a sufficiently long time has passed, both the filling machine and emptying machine

work without pausing. Find, in terms of a and b, the least possible value of n.

The answer is 2(a+ b− gcd(a, b)). We view the problem through two models:

• the discrete model, where cups are filled instantly at the end of each a-minute period, and

cups are emptied instantly at the end of each b-minute period; and

• the continuous model, where cups are filled at a constant rate during each a-minute period,

and cups are emptied at a constant rate during each b-minute period.

We begin by assuming gcd(a, b) = 1.

Lower bound for gcd(a, b) = 1: Assume that at some time, say t = 0, both the filling

machine and the emptying machine are starting their next cycle. Suppose that c cups are filled

at t = 0.

Using the discrete model, it suffices to consider when t is a multiple of a or b.

15
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• At t = ka, the number of full cups is c+ (ka mod b), whose maximum value is c+ b− 1.

For the machines to continue working without pausing, we must have n ≥ (c+ b− 1) + a.

• At t = ℓb, the number of full cups is c − (ℓb mod a), whose minimum value is c − a + 1.

For the machines to continue working without pausing, we must have 0 ≤ (c− a+ 1)− b.

Thus n ≥ 2(a+ b− 1).

Upper bound for gcd(a, b) = 1: Assume n = 2(a + b − 1), and consider the continuous

model. Let t be the time and L be the total amount of liquid in the cups.

• When t is an integer and L ≥ a + b − 1, there is at most a − 1 total liquid in (at most

a) cups being filled and thus at least b totally filled cups. Hence the emptying machine is

active and decreases L by 1 per minute.

• When t is an integer and L ≤ a+ b− 1, there is at least 1 total liquid (i.e. at most b− 1

empty space) in (at most b) cups being emptied and thus at least a totally empty cups.

Hence the filling machine is active and increases L by 1 per minute.

Each minute, either both machines are active, or L gets 1 closer closer to a+ b−1 (if it is not

equal to a + b − 1 already). The latter can only occur finitely many times, so L is eventually

constant.

Finish for gcd(a, b) > 1: From the perspective of the discrete model, events only happen

when time is a multiple of gcd(a, b), and moreover the amount of total liquid is always a multiple

of gcd(a, b).

Hence the problem for (a, b) is the problem for (a/ gcd(a, b), b/ gcd(a, b)), with time and liquid

scaled up by gcd(a, b). It readily follows that the general answer is 2(a+ b− gcd(a, b)).

ELMO3 — ELMO 2023/3

Convex quadrilaterals ABCD, A1B1C1D1, and A2B2C2D2 are similar with vertices in order. Points A,

A1, B2, B are collinear in order, points B, B1, C2, C are collinear in order, points C, C1, D2, D are

collinear in order, and points D, D1, A2, A are collinear in order. Diagonals AC and BD intersect at

P , diagonals A1C1 and B1D1 intersect at P1, and diagonals A2C2 and B2D2 intersect at P2. Prove that

points P , P1, and P2 are collinear.

Let X be the center of spiral similarity between ABCD and A1B1C1D1, and let Y be the

center of spiral similarity between ABCD and A2B2C2D2. Let θ := ∡XAB = ∡XBC =

∡XCD = ∡XDA and θ′ := ∡ABY = ∡BCY = ∡CDY = ∡DAY .

A

B

C

D

A1

B1

C1

D1A2

B2

C2

D2
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Claim 1. θ = θ′; i.e. X and Y are isogonal conjugates.

Proof. Assume for contradiction θ < θ′ (without loss of generality). Then by the law of sines

in △XDA and △Y AB, we have

XD

XA
=

sin(∠A− θ)

sin θ
>

sin(∠A− θ′)

sin θ′
=

Y B

Y A
.

Multiplying cyclically gives

1 =
∏
cyc

XD

XA
>

∏
cyc

Y B

Y A
= 1,

contradiction.

A

B

C

D

X

Y

M

N
P

Claim 2. ABCD is cyclic.

Proof. Note

∡AXD = ∡XAD + ∡ADX = ∡XAD + ∡BAX = ∡BAD

and similarly ∡BXC = ∡BCD.

Since X has an isogonal conjugate,

∡BAD = ∡AXD = ∡BXC = ∡BCD.

Claim 3. ABCD is harmonic.

Proof. Observe that

△AXD ∼ △AY B =⇒ Y A

XA
=

AB

AD

△BXA ∼ △BY C =⇒ Y C

XA
=

BC

AB

△CXB ∼ △CY D =⇒ Y C

XC
=

CD

BC

△DXC ∼ △DY A =⇒ Y A

XC
=

AD

BC
.

Hence

1 =
Y A

XA
· XC

Y A
· Y C

XC
· XA

Y C
=

AB

AD
· BC

AD
· CD

BC
· AB
BC

,

implying AB · CD = AD ·BC.

Now let P = AC ∩ BD, P1 = A1C1 ∩ B1D1, P2 = A2C2 ∩ B2D2. Let M be the midpoint of

AC and N the midpoint of BD.

17
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Claim 4. X lies on (ABN) and (CDN); similarly Y lies on (ADN) and (BCN).

Proof. The first follows from ∡ANB = ∡ADC = ∡AXB, and the rest follow analogously.

Claim 5. P , X, Y , M , N are concyclic.

Proof. We have

∡XNP = ∡XAB = ∡XBC = ∡XMP,

implying X ∈ (PMN), and similarly Y ∈ (PMN).

Finally

∡XPY = ∡XNY = ∡XNA+ ∡ANY = ∡XBA+ ∡ADY = 2θ,

so

∡P1PP2 = ∡P1PX + ∡XPY + ∡Y PP2 = (−θ) + 2θ + (−θ) = 0◦,

as desired.

ELMO4 — ELMO 2023/4

Let ABC be an acute scalene triangle with orthocenter H. Line BH intersects AC at E and line CH

intersects AB at F . Let X be the foot of the perpendicular from H to the line through A parallel to

EF . Point B1 lies on line XF such that BB1 is parallel to AC, and point C1 lies on line XE such that

CC1 is parallel to AB. Prove that points B, C, B1, C1 are concyclic.

We present a few solutions. In each, let A′ = BB1 ∩ CC1, so ABA′C is a parallelogram.

First solution (author) Since A′H ⊥ EF , we have X, H, A′ collinear. But

∡B1XA′ = ∡FEH = ∡FCB = ∡XA′B1,

implying B1X = B1A
′. Similarly C1X = C1A

′, so B1C1 ⊥ XHA′.

This means BC and B1C1 are antiparallel in ∠A′, so BB1CC1 is indeed cyclic.

A

B CM

E

F

A′

H

X

B1

C1
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Second solution (mine) Let M be the midpoint of BC. Since AEFX is an isosceles trapezoid

and ME = MF ,

∡B1FM = ∡XFM = ∡MEA = ∡ECM = ∡B1BM,

so B1 ∈ (BMF ). Similarly C1 ∈ (CME).

But since AB · AF = AC · AE, line AM is the radical axis of (BMF ) and (CME). In

particular, A′ lies on this radical axis, so A′B ·A′B1 = A′C ·A′C1 as needed.

Third solution (author) Let M be the midpoint of BC.

Let ℓ be the perpendicular bisector of EF (so M ∈ ℓ). Let B2 is the reflection of B1 in ℓ and

let M ′ ∈ ℓ be the midpoint of B1B2. Since XF and AE are reflections in ℓ, we know B2 lies

on AC. If M ̸= M ′, this implies ℓ = MM ′ ∥ AC, which is absurd. Hence M is the midpoint of

B1B2, i.e. B1M ⊥ ℓ. Similarly C1M ⊥ ℓ.

Then B1C1 ∥ EF , implying BC and B1C1 are antiparallel in ∠A′, which gives the desired.

ELMO5 — ELMO 2023/5

Find the least positive integer M for which there exist a positive integer n and polynomials P1(x), P2(x),

. . ., Pn(x) with integer coefficients satisfying

Mx = P1(x)
3 + P2(x)

3 + · · ·+ Pn(x)
3.

The minimum value of M is 6, achieved by

6x = (x+ 1)3 + (x− 1)3 + (−x)3 + (−x)3.

For the lower bound, write

Mx =

n∑
k=1

Pk(x)
3.

We will show 6 | M , which suffices.

In Z[x]/(x2+x+1), there are integers ak and bk for each k such that Pk(x) = akx+ bk. Then

Mx =

n∑
k=1

(akx+ bk)
3

=

n∑
k=1

[
a3k + b3k + 3a2kbkx+ 3akb

2
k(−x− 1)

]
=

n∑
k=1

[
a3k + b3k − 3akb

2
k + 3akbk(ak − bk)x

]
,

so we must have

M =

n∑
k=1

3akbk(ak − bk).

But 3akbk(ak − bk) is a multiple of 6 for all integers ak and bk, so 6 | M .

Remark. Equivalently, one may substitute a primitive third root of unity for x.
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ELMO6 — ELMO 2023/6

For a set S of positive integers and a positive integer n, consider the game of (n, S)-nim, which is

as follows. A pile starts with n watermelons. Two players, Deric and Erek, alternate turns eating

watermelons from the pile, with Deric going first. On any turn, the number of watermelons eaten must

be an element of S. The last player to move wins. Let f(S) denote the set of positive integers n for

which Deric has a winning strategy in (n, S)-nim.

Let T be a set of positive integers. Must the sequence

T, f(T ), f(f(T )), . . .

be eventually constant?

Yes, the sequence must be eventually constant. In what follows, let S = Z≥0 \ S, so f(S) =

S + f(S) for all S. Note that S ⊆ f(S) always, so the limit f∞(T ) is well-defined.

Claim 1. Let m be the smallest positive integer in T . If all multiples of m are in f∞(T ),

then f(T ) = f∞(T ).

Proof. Since T ⊆ f∞(T ), this means all multiples of m are in T . However, 1, 2, . . . , m − 1

are in T . We may then compute that f(T ) is exactly the set of non-multiples of m, implying

f(T ) = f∞(T ).

Claim 2. If there are a and b with a, b ∈ f∞(T ) but a+b ∈ f∞(T ), then f j+3(T ) = f∞(T )

for some j (defined below).

Proof. We take j as the index for which n ∈ f j(T ) ⇐⇒ n ∈ f∞(T ) for n ≤ a+ b (which must

exist since S ⊆ f(S) always).

For n > a+ b, note:

• If n− a− b /∈ f j+1(T ) then n = (a+ b) + (n− a− b) ∈ f j+1(T ).

• If n− a− b ∈ f j+1(T ), then n− b = (n− a− b) + a ∈ f j+2(T ) so (n− b) + b ∈ f j+3(T ).

Thus all n > a+ b are in f j+3(T ) ⊆ f∞(T ), implying f j+3(T ) = f∞(T ).

If T = {0} then we are already done. Otherwise m exists, we may check that m ∈ f∞(T ).

Then:

• If all multiples of m are in f∞(T ), then Claim 1 finishes.

• Otherwise, let ℓm be the smallest multiple of m not in f∞(T ). Taking a = m and

b = (ℓ− 1)m in Claim 2 finishes.

This completes the proof.

Remark. If all multiples of m are in f∞(T ), then Claim 1 establishes that f(T ) = f2(T ). Other-

wise, the argument in Claim 1 restricted to [1, ℓm] shows that f(T )∩ [1, ℓm] = f∞(T )∩ [1, ℓm], i.e.

we may take j = 1 in Claim 2. This establishes that f4(T ) = f5(T ) for all T .

Remark. It has been claimed by Colin Tang (independently), Justin Lee, and Espen Slettnes that

f3(T ) = f4(T ) for all T , but I have yet to review a proof of this claim.
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§2.6 Solutions to Mock IMO

MIMO1 — ISL 2022 A2

Let k ≥ 2 be an integer. A nonempty set S of real numbers has the property that every element s ∈ S

can be written as the sum of k distinct elements of S that are not equal to s. Find the smallest possible

value of |S|, in terms of k.

The smallest value of |S| is k + 4.

Lower bound: Let M be the maximal element of S and let A be the set of size k not

containing M that sums to M . Similarly let m be the minimal element and B the set summing

to m.

Let σ(T ) denote the sum of the elements of set T . Consider the sets

X = S \ (A ⊔ {M})
and Y = S \ (B ⊔ {m}).

Then we have

|X| = |Y | = |S| − (k + 1),

σ(X) = σ(S)− 2M,

and σ(Y ) = σ(S)− 2m.

In particular,

σ(Y )− σ(X) = 2(M −m).

But X and Y have the same size and each contain elements in the range [m,M ], so we require

|X| = |Y | ≥ 3, implying |S| ≥ k + 4.

Construction: For each ℓ ≥ 3, we may check that S = {±1,±2, . . . ,±ℓ} works for k = 2ℓ−4

and S = {0,±1, . . . ,±ℓ} works for k = 2ℓ− 3.

MIMO2 — ISL 2022 A6

Find all rational numbers q for which there exists a function f : R → R satisfying

f(x+ f(y)) = f(x) + f(y) and f(z) ̸= qz

for all real numbers x, y, z.

The q tht fail are of the form n+1
n for some integer n. The rest work.

Proof of necessity: Setting x = nf(0) and y = 0 gives f((n + 1)f(0)) = f(nf(0)) + f(0),

implying inductively that f(nf(0)) = (n + 1)f(0) for all integers n. If q = n+1
n , then taking

z = nf(0) gives f(z) = qz.

Proof of sufficiency: If q ̸= n+1
n for any n, it is equivalent to say 1

q−1 /∈ Z. In particular,

any arithmetic progression with common difference q − 1 does not hit every (positive) integer.

(If q = 1, take f(x) = x+ 1. Henceforth q ̸= 1.)

Define f as follows:
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(i) For r ∈ [0, 1), take f(r) as the smallest positive integer not in the progression . . ., a−2,

a−1, a0, a1, a2, . . . defined by an = qr + (q − 1)n.

(ii) For all x, take f(x) = ⌊x⌋+ f(x− ⌊x⌋).

Since f(y) is always an integer, it is easy to check f satisfies the functional equation.

Moreover, if f(z) = qz and z = n+ r where n = ⌊z⌋ and r ∈ [0, 1), then

n+ f(r) = q(n+ r) =⇒ f(r) = qr + (q − 1)n,

which is a situation we explicitly avoid.

MIMO3 — ISL 2022 G8

Let AA′BCC ′B′ be a convex cyclic hexagon such that line AC is tangent to the incircle of △A′B′C ′

and line A′C ′ is tangent to the incircle of △ABC. Let lines AB and A′B′ intersect at X and let lines

BC and B′C ′ intersect at Y . Prove that if XBY B′ is a convex quadrilateral, then it has an incircle.

Let Ω be the circumcircle, and let ω and ω′ denote the incircles of△ABC and△A′B′C ′.

Claim 1. B, B′, I, I ′ are concyclic.

Proof. Let BI and B′I ′ intersect Ω again at M and M ′. It is clear MM ′ ∥ II ′ (since both make

equal angles with AC and A′C ′), so the concyclicity follows from Reim.

A

B

C

A′

B′

C ′

I

I ′

M

M ′

P

Q

P ′ Q′

Let a common external tangent to ω and ω′ intersect Ω at P and Q.

Claim 2. P , Q, I, I ′ are concyclic.

Proof. By Poncelet’s porism there are R and R′ on Ω so that △PQR has incircle ω and △PQR′

has incircle ω′. Then

∠PIQ = 90◦ + 1
2∠PRQ = 90◦ + 1

2∠PR′Q = ∠PI ′Q,

implying the concyclicity.
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Let P ′Q′ be the other common external tangent, and let X = II ′ ∩ PQ ∩ P ′Q′ be the

exsimilicenter of ω and ω′. It follows from PQII ′ and P ′Q′II ′ cyclic that there is an inversion

Ψ at X swapping (I, I ′), (P,Q), (P ′, Q′). This inversion must also swap (B,B′).

In particular, BB′ passes through the exsimilicenter X of ω and ω′. By converse Monge (say,

via a phantom circle argument), we conclude.

Remark. A solution by Fedir Yudin constructs J = BI ∩B′I ′ and shows via a length computation

that J is equidistant from the four lines. There is also an approach with Desargue involution.

MIMO4 — ISL 2022 G2

Point P lies in the interior of acute triangle ABC such that lines AP and BC are perpendicular. Points

D and E on side BC satisfy PD ∥ AC and PE ∥ AB, and points X ̸= A and Y ̸= A lie on the

circumcircles of △ABD and △ACE, respectively, such that DA = DX and EA = EY . Prove that

points B, C, X, and Y are concyclic.

Note the foot from A to BC has equal power to (ABD) and (ACE), thus the altitude is the

radical axis and so A′ = BX ∩ CY the reflection of A in BC does as well. This finishes.

MIMO5 — ISL 2022 N5

For each 1 ≤ i ≤ 9 and positive integer T , let di(T ) denote the total number of times the digit i appears

when all multiples of 2023 between 1 and T inclusive are written out in base 10. Prove that there are

infinitely many positive integers T such that there are exactly two distinct values among d1(T ), d2(T ),

. . ., d9(T ).

Let T = 10nφ(2023) − 1 for any positive integer n. Let dij(T ) denote the number of times the

digit i appears in the jth digit (where j = 0 denotes the units digit, j = 1 denotes the tens

digit, and so on).

Claim 1. There are two distinct values among d10(T ), d20(T ), . . ., d90(T ).

Proof. The units digits 3, 6, 9 each appear one more than each of the remaining digits.

Claim 2. For each i, we have di0(T ) = di1(T ) = di2(T ) = · · · .

Proof. For each n with 2023 | n whose nφ(2023)th digit from the right is equal to d, note that

the cyclic shift 10n− dT is also divisible by 2023. Hence if we split the numbers between 1 and

T into equivalence classes based on cyclic shifts, each equivalence class contributes to di0, di1,

. . . equally. This proves the claim.

The two above claims combined solve the problem.

MIMO6 — ISL 2022 C7

Let s be a positive integer. Lucy and Lucky play the following game on a blackboard. Lucy ini-

tially writes s integer-valued 2023-tuples on the board. Lucky then gives Lucy an integer-valued 2023-

tuple. Afterwards, Lucy can repeatedly take any two (not necessarily distinct) tuples (v1, . . . , v2023) and

(w1, . . . , w2023) on the blackboard and writes the tuples

(v1 + w1, . . . , v2023 + w2023) and (max(v1, w1), . . . ,max(v2023, w2023)
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on the board. Lucy wins if she can write Lucky’s tuple on the board in a finite number of steps.

Determine the smallest value of s for which Lucy has a winning strategy.

TODO
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