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8§81 Problems

§1.1 MOP Test 1

Problem K1.1 (ISL 2022 G3). Let ABCD be a cyclic quadrilateral, and let P and @ be
points on line AB such that line AC' is tangent to the circumcircle of AADQ and line BD is
tangent to the circumcircle of ABCP. Let M and N be the midpoints of segments BC' and
AD respectively. Prove that the tangent to the circumcircle of AANQ at A and the tangent
to the circumcircle of ABM P at B intersect on line C'D.

Problem K1.2 (ISL 2022 A4). Determine the largest constant ¢ > 0 such that, for any integer
n > 3 and for any reals x1, xo, ..., z, in [0, 1] whose sum s is at least 3, there exist integers i
and j with 1 <7< j <n and

2j_i:n¢:nj > c-2°.

Problem K1.3 (ISL 2022 N6). Prove that there exist a positive real ¢ and a positive integer
Ny such that the following holds:

Let @@ be any set of prime numbers. For each positive integer n,

e let p(n) denote the number of primes dividing n, counted with multiplicty, and
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e let ¢(n) denote the number of primes in @ dividing n, counted with multiplicity.

Then, for any positive integer N > Ny, there exist at least c¢/N positive integers n in
{1,..., N} such that p(n) + p(n + 1) and g(n) + g(n + 1) are both even.

§1.2 MOP Test 2

Problem K2.1 (ISL 2022 C4). Let n > 3 be an integer. There are n coins distributed to n
children in a circle. At every step, a child with at least two coins gives one coin to each of their
neighbors. Determine all initial distributions of the coins such that it is possible for all children
to have exactly one coin after a finite number of steps.

Problem K2.2 (ISL 2022 G6). Let ABC be an acute triangle and let H be the foot from A
to BC. Let P be a variable point such that the internal angle bisectors k and ¢ of ZPBC and
/PCB, respectively, meet on AH. Let k meet AC at F, { meet AB at F, and EF and AH at
Q. Prove that as P varies, line P() passes through a fixed point.

Problem K2.3 (ISL 2022 A5). Find all integers n > 2 for which there exists real numbers
a1 < --- < ap such that the (g) numbers of the form a; — a; (for 1 < i < j < n) can be

rearranged to form a geometric progression.

§1.3 MOP Test 3
Problem K3.1 (ISL 2022 N2). Find all integers n > 3 such that n! divides the product

II e+9.

p<gsn
P, q prime

Problem K3.2 (ISL 2022 G4). Let ABC be an acute scalene triangle with circumcenter O,
and let D be a point on side BC. The line through D perpendicular to BC meets lines AO, AC,
and AB at W, X, and Y, respectively. The circumcircles of AAXY and AABC intersect again
at Z # A. Prove that if W # D and OW = OD, then line DZ is tangent to the circumcircle
of AAXY.

Problem K3.3 (ISL 2022 C9). Let Z>o denote the set of nonnegative integers, and let f :
ZQ>0 — Z>o be a bijection such that for any four nonnegative integers x1, x2, y1, y2 satisfying

f(z1,91) > f(2,y2), it holds that f(z1+1,41) > f(z2+1,92) and f(z1,y1+1) > f(x2,y2+1).
Let N be the number of integer pairs (z,y) with 0 < z,y < 100 for which f(z,y) is odd. As
f varies, determine the smallest and largest possible value of N.

§1.4 MOP Test 4

Problem K4.1 (ISL 2022 N3). Let a > 2 and d > 2 be relatively prime integers. Let 1 = 1
and for k > 1, define
xp +d if a doesn’t divide xy,
Lh+1 = . . .
xp/a  if n divides zy.

Find the greatest positive integer n for which some term of the sequence is divisible by a™.

Problem K4.2 (ISL 2022 C6). At MOP, there are a finite number of students who are grouped
into different classrooms. At every step, Po may remove an equal number of students from two
classrooms and put them all in a new empty classroom. Determine, in terms of the initial
grouping, the smalest possible number of nonempty classrooms he can obtain after a finite
number of steps.
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Problem K4.3 (ISL 2022 A7). Let s(m) denote the sum of the digits of a positive integer m.
Determine whether there exists a polynomial P(z) = 2™ + a,,_12" ' + - - 4+ a1z + ag, for some
n > 2, such that

® ag, ay, ..., G,—1 are positive integers, and

e for all positive integers k, s(k) + s(P(k)) is even.

§1.5 ELMO

Problem ELMO1 (Raymond Feng). Let m be a positive integer. Find, in terms of m, all
polynomials P(x) with integer coefficients such that for every integer n, there exists an integer
k such that P(k) = n™.

Problem ELMOZ2 (Raymond Feng). Let a, b, and n be positive integers. A lemonade stand
owns n cups, all of which are initially empty. The lemonade stand has a filling machine and an
emptying machine, which operate according to the following rules:

e If at any moment, a completely empty cups are available, the filling machine spends the
next a minutes filling those a cups simultaneously and doing nothing else.

e If at any moment, b completely full cups are available, the emptying machine spends the
next b minutes emptying those b cups simultaneously and doing nothing else.

Suppose that after a sufficiently long time has passed, both the filling machine and emptying
machine work without pausing. Find, in terms of a and b, the least possible value of n.

Problem ELMOS3 (Holden Mui). Convex quadrilaterals ABCD, A1 B1C1 D1, and A3ByCoDo
are similar with vertices in order. Points A, A;, By, B are collinear in order, points B, Bi,
Cy, C are collinear in order, points C, C'y, Dy, D are collinear in order, and points D, Dy,
Ao, A are collinear in order. Diagonals AC and BD intersect at P, diagonals A1C7 and B; D1
intersect at P;, and diagonals AsCs and Bs D> intersect at P. Prove that points P, P;, and P
are collinear.

Problem ELMO4 (Luke Robitaille). Let ABC be an acute scalene triangle with orthocenter
H. Line BH intersects AC at E and line CH intersects AB at F. Let X be the foot of the
perpendicular from H to the line through A parallel to EF. Point By lies on line X F' such that
BB, is parallel to AC, and point C; lies on line X E such that CC; is parallel to AB. Prove
that points B, C, By, C; are concyclic.

Problem ELMO5 (Karthik Vedula). Find the least positive integer M for which there exist
a positive integer n and polynomials Pi(x), Py(z), ..., P,(z) with integer coefficients satisfying

Mz = Py(x)? + Py(z) + - - - 4+ Py(z)>.

Problem ELMOG6 (Brandon Wang, Edward Wan). For a set S of positive integers and a
positive integer n, consider the game of (n,S)-nim, which is as follows. A pile starts with n
watermelons. Two players, Deric and Erek, alternate turns eating watermelons from the pile,
with Deric going first. On any turn, the number of watermelons eaten must be an element of
S. The last player to move wins. Let f(S) denote the set of positive integers n for which Deric
has a winning strategy in (n,.S)-nim.

Let T be a set of positive integers. Must the sequence

T, f(T), F(f(T)), ...

be eventually constant?
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§1.6 Mock IMO

Problem MIMO1 (ISL 2022 A2). Let k > 2 be an integer. A nonempty set .S of real numbers
has the property that every element s € S can be written as the sum of k distinct elements of
S that are not equal to s. Find the smallest possible value of |S|, in terms of k.

Problem MIMOZ2 (ISL 2022 A6). Find all rational numbers ¢ for which there exists a function
f R — R satisfying
fle+ f(y) = fx)+ fly) and [(2) #qz

for all real numbers z, y, z.

Problem MIMOS3 (ISL 2022 G8). Let AA'BCC’B’ be a convex cyclic hexagon such that line
AC' is tangent to the incircle of AA’B'C’ and line A’C’ is tangent to the incircle of AABC.
Let lines AB and A’B’ intersect at X and let lines BC and B’C’ intersect at Y. Prove that if
XBY B’ is a convex quadrilateral, then it has an incircle.

Problem MIMO4 (ISL 2022 G2). Point P lies in the interior of acute triangle ABC such
that lines AP and BC are perpendicular. Points D and E on side BC satisfy PD || AC and
PE || AB, and points X # A and Y # A lie on the circumcircles of AABD and AACE,
respectively, such that DA = DX and FA = EY. Prove that points B, C, X, and Y are
concyclic.

Problem MIMOS5 (ISL 2022 N5). For each 1 <1 < 9 and positive integer T', let d;(T") denote
the total number of times the digit ¢ appears when all multiples of 2023 between 1 and T
inclusive are written out in base 10. Prove that there are infinitely many positive integers T
such that there are exactly two distinct values among dy(T), dao(T), ..., do(T).

Problem MIMOG6 (ISL 2022 C7). Let s be a positive integer. Lucy and Lucky play the
following game on a blackboard. Lucy initially writes s integer-valued 2023-tuples on the board.
Lucky then gives Lucy an integer-valued 2023-tuple. Afterwards, Lucy can repeatedly take any
two (not necessarily distinct) tuples (v1,...,v2023) and (wi, ..., wa23) on the blackboard and
writes the tuples

(v1 + w1, ..., V2023 + wop23) and (max(vy,wy),..., max(vagas, W023)

on the board. Lucy wins if she can write Lucky’s tuple on the board in a finite number of steps.
Determine the smallest value of s for which Lucy has a winning strategy.
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8§82 Solutions

§2.1 Solutions to MOP Test 1
K1.1 — ISL 2022 G3

Let ABCD be a cyclic quadrilateral, and let P and @) be points on line AB such that line AC' is tangent
to the circumcircle of AADQ and line BD is tangent to the circumcircle of ABCP. Let M and N be the
midpoints of segments BC' and AD respectively. Prove that the tangent to the circumcircle of AANQ
at A and the tangent to the circumcircle of ABM P at B intersect on line C'D.

Let the tangent to (ANQ) at A intersect (ADQ) at S. Then £DQS = ANAS = LNQA
implies QS is a symmedian of AANGQ, hence

—1=(AD;QS) 2 (C,D; ABNCD,ASNCD).

Symmetrically, we conclude AS and the corresponding tangent at B both intersect at the
harmonic conjugate of AB N C'D with respect to CD.

K1.2 — ISL 2022 A4

Determine the largest constant ¢ > 0 such that, for any integer n > 3 and for any reals x1, zo, ..., T, in
[0, 1] whose sum s is at least 3, there exist integers ¢ and j with 1 <i < j <n and

2j7ix¢:1:j >c-2°.

The answer is ¢ = %.
Take 7 and j so that 27 _ixixj is maximal; then 2~%x; is maximal for all choices of i < j and
2J x; is maximal for all choices of j > i¢. We will make changes without increasing 2J _ixix]- -278,

Note that:

e We may always increase 3, for k < i to 25 “x;, as this only increases s without affecting
the optimality of the choice of (4, j), and thus does not increase max; ; 2J *ixixj <275,

e Similarly, we may always increase xj for k > j to 27 *kxj.

e Additionally, we may extend the sequence indefinitely in both directions, and increase
such terms in accordance with the previous two bullet points.

e Similarly, we may always increase x, for i < k < j to min{1, 28 z;, 27 %z},

e While j —¢ > 2 and z; < %, we have x;11 = 2x; and hence we may replace ¢ with ¢ + 1

without changing the value of 27 _ixixj.

e Similarly while j —¢ > 2 and x; < 1

5, we may replace j with j — 1.

Hence our sequence looks like (for large ¢)

—¢ -1 —1 —0
27y e, 27wy g, 1, o, L,y 27y, L, 27y

t ones

Then we have s — 2x; + 2z +tand j —i =1t + 1, so

o ot g T @
J =l . 9S8 ) 9.t T .
2y 270 > 57 70, 11 2 = 1 > 2
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since z;, z; € [1/2,1].
We achieve ¢ — 1/8 by taking ¢ — oo in the sequence

o=t o=t 972 971 90 9=l 9=2 o=+l o=l

K1.3 — ISL 2022 N6

Prove that there exist a positive real ¢ and a positive integer Ny such that the following holds:

Let @ be any set of prime numbers. For each positive integer n,

e let p(n) denote the number of primes dividing n, counted with multiplicty, and

e let g(n) denote the number of primes in @ dividing n, counted with multiplicity.
Then, for any positive integer N > Nj, there exist at least ¢/ positive integers n in

{1,..., N} such that p(n) + p(n + 1) and ¢(n) + ¢(n + 1) are both even.

For each positive integer IV, consider
S = {5040N, 5040N + 70, 5040N + 72, 5040N + 75, 5040N + 80}.

There are 4 possible values of {p(n) mod 2, ¢(n) mod 2}, so by Pigeonhole, there are distinct a
and b in S with p(a) = p(b) (mod 2) and ¢(a) = ¢(b) (mod 2).

But S is constructed with the property that for any a < b in .S, b — a divides both a and b.
Hence

p(555) +7 (5os) = 9@ +20) - 20 -0 =0 (mod2),

q<bfa> +q<b_ba> =0 (mod2).

Since % and ﬁ are one apart, each N generates a valid n.
Hence for each M, the first M choices of N generate M different n up to 5040N + 80. Each
value of n is counted at most (g) times, so any ¢ < m works.

and similarly

§2.2 Solutions to MOP Test 2
K2.1 — ISL 2022 C4

Let n > 3 be an integer. There are n coins distributed to n children in a circle. At every step, a child
with at least two coins gives one coin to each of their neighbors. Determine all initial distributions of
the coins such that it is possible for all children to have exactly one coin after a finite number of steps.

Label the children 1, 2, ..., n and let them have aj, ag, ..., a, coins, respectively (with
indices modulo n). Note that a; + 2as + - -+ + na, is invariant modulo n, so for the desired
distribution to be reachable, we must have

n Zi(ai —1). (*)
i=1

We show that if the initial distribution satisfies the above, then the desired distribution is
reachable.
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Choose integers dy, ..., d, such that
T; — 1= di — di+1 for all i.

With (x), we can check that n | di + --- + d,, so by shifting d; appropriately, we may set
dy+---+d, =0.
Then we may choose integers a1, ..., a, such that

di =a;—a;—1 foralli and miin a; = 0.
Thus we have nonnegative integers aq, ..., a, with
xi—1=2a; —a;—1 —a;41 for all 4.
While there exists ¢ with x; > 2, note that
1<2;,—1<2a; = a; > 1,

so decrease a; by 1. This is equivalent to decreasing z; by 2 and increasing x; 1 and x;41 by 1.
Do this until xz; < 1 for all 4, and of course equality holds.

K2.2 — ISL 2022 G6

Let ABC be an acute triangle and let H be the foot from A to BC. Let P be a variable point such that
the internal angle bisectors k and ¢ of ZPBC and ZPC B, respectively, meet on AH. Let k meet AC
at E, { meet AB at F, and EF and AH at (). Prove that as P varies, line PQ passes through a fixed
point.

Let D = kN/, and let Z be the intersection of the reflection of BC over AB and the reflection
of BC over CA. Then A is an incenter or excenter of AZBC and D is an incenter or excenter of
APBC. We assume both are incenters without loss of generality (the other cases are analogous).
We show Z is the fixed point.

If we define Q' = ZP N AD, we wish to show @’ is collinear with £ = AC N DB and
F = ABn DC. By Ceva-Menelaus, we wish to show:

Let ZBPC be a quadrilateral. Let w4 and wp be the incircles and A and D the
incenters of AZBC and APBC), respectively. If wq and wp are tangent at a point
H on BC, then Q' = ZP N AD satisfies (AD; HQ') = —1.
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Note that

ZB+B2C—ZC:BH:PB+BQC—PC . ZB-ZC = PB - PC.

so ZBPC has an incircle w by Pitot.
Note that H is the insimilicenter of w4 and wp. By Monge on w, wya, wp, the exsimilicenter
is @Q'. The desired harmonic bundle follows.

Remark. Another proof is to draw the hyperbola ‘H with foci B and C' through Z, H, P, and note

that A= ZZ N PP and D = HH N PP. Then the desired harmonic bundle follows from duality.
This also works as a standalone proof by initially setting H as the hyperbola with foci B and C'

through H and P, and identifying Z as the intersection of the second tangent from A to H.

Remark. The fixed point Z = AO N (OBC) may be identified by the following:
e Setting D — A gives that the fixed point lies on AO.

e Setting D as the reflection of A over BC gives that the fixed point lies on the line through
AO N (OBC) perpendicular to BC.

Remark. The problem is also not hard to coordinate bash. Perhaps this is slightly more difficult
if the fixed point is actually provided in the problem statement.

K2.3 — ISL 2022 A5

n

2) numbers of

Find all integers n > 2 for which there exists real numbers a; < --- < a,, such that the (
the form a; — a; (for 1 <14 < j <n) can be rearranged to form a geometric progression.

The answer is n < 4, constructed as follows:

e For n =2, take as —a; = 1.
e For n =3, take ay —a; = 1 and a3 — as = z, where 22 = z + 1.
o For n =4, take as —a; =1, a3 — ap = =, and a4 — ag = x2, where 2> = z + 1.
It suffices to show n < 4 is necessary.
2 n

By scaling, let the (g) differences be 1, z, z=, ..., :z:(2)_1, where £ > 1. For 0 < k < (g) -1,

let I, = [Lg, Rg] such that QR, — QL, = :Ek, and let dp, = R, — Ly.

I Claim 1. I and Iy share at least a point for each k.

Proof. Assume for contradiction there is an interval I; of positive length between the closest
endpoints of I and Iy 1, and let I, = I U Iy and I, = 41 U I,.
Of course v > u > k + 1, but

k+1_xk:$v_$u>xu+1_xu>xk+1_xk

- )

T

contradiction. O

Of course dy = d; = 1. Let r be minimal such that d, > 1.
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I Claim 2. r<3and 2" =x+ 1.

Proof. Since Iy, and Iy, share a point for each k and dy = 1 for k < r, the intervals Iy, I1, ...,
I,._1 appear in order.

The smallest interval of length greater than 1 is IoU Iy, so I, = Iy U I, implying 2" = x + 1.
Moreover, we readily have I, = L1 U, ..., Iop o =1, _oUI._.

Therefore if Iy = Io U I1 U Iy, then s > 2r — 1, so we have

1+.Z‘+.’L'2:£L‘SZ£L‘2T_1.
In particular,
c+2 43> =24+1)? = B> +1=2a",

sor <3. O

I Claim 3. n=r+1.

Proof. As previously established, the intervals Iy, Iy, ..., I,_1 appear in order, so n > r + 1.

Let R = (r;rl). We may check in both cases r = 2 and » = 3 the R differences induced by
the r 4+ 1 endpoints of Iy, ..., I,_1 induce the (g) differences 1, =, 22, ..., 2®~1. (In particular,
I 1=IhyulLU--- U[r—l-)

If n > r+2, then it is necessary to locate Ir, which must intersect Ir_1. But if Ip_ intersects
I at an interval I; of positive length, then 2 — 2!, the length of the interval Iy \ I;, must be
a power of z less than 2. But we have identified all intervals of such length, contradiction.

Thus Ig intersects Ir_1 at an endpoint. But then:

o If I intersects Ir_1 at an endpoint in Iy, then the intervals Ir U Iy, Ig U Ig U I4, ...,

IrUIpU---UI._5 must all have length strictly between 2 and zff + 2Bl = gh-147
but there are only r — 2 distinct possible interval lengths strictly between z* and =147,
contradiction.

e If I intersects Ir_1 at an endpoint in I,_q, we derive a similar contradiction with the
intervals Ir N 1I._q, .... ]

Since r < 3, we have n < 4.

§2.3 Solutions to MOP Test 3
K3.1 — ISL 2022 N2

Find all integers n > 3 such that n! divides the product

II e+a.

p<q<n
P, q prime

The answer is n = 7, which works. We may manually check all other n < 10 fail, and proceed
to show n > 11 fail as well.
Let » > 11 be the largest prime at most n. It suffices to show

r! does not divide H (p+q).

p<q<r

Assume for contradiction r! does divide the product.
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I Claim 1. r — 2 is prime.

Proof. Since p+ q < 2r, the only way for a factor of r to appear in the product is if p+ ¢ =,
forcing (p,q) = (2,7 — 2). Hence r — 2 must be prime. O

I Claim 2. r —4 is prime.
Proof. Since p + q < 3(r — 2), the only ways for a factor of r — 2 to appear in the product is if
p+q=r—2o0rp+q=2r—2).

e In the former case, we must have (p,q) = (2,7 —4), so r — 4 is prime.

e In the latter case, note if ¢ < r—2 then p+¢q < 2(r —2), so we must have (p,q) = (r—4,r).
In particular, r — 4 is prime. O

But for » > 11, it is absurd for r, r — 2, 7 — 4 to be prime.

K3.2 — ISL 2022 G4

Let ABC be an acute scalene triangle with circumcenter O, and let D be a point on side BC. The
line through D perpendicular to BC meets lines AO, AC, and AB at W, X, and Y, respectively. The
circumcircles of AAXY and AABC intersect again at Z # A. Prove that if W # D and OW = OD,
then line DZ is tangent to the circumcircle of AAXY'.

Let A’, B', C' be the antipodes of A, B, C, so W lies on B’C’. Let Z’ and H 4 lie on (ABC)
with AH4 | BC and AZ || BC.

By Pascal on H,Z'C'BC A, the line through D perpendicular to BC contains Z'C’' N CA, so
X € Z'C". Similarly Y € Z’B’. Moreover

LY Z'X = AB'ZC" = ABAC = LY AX,

so Z' € (AXY) and thus Z = Z'.
Finally Z is the Miquel point of BCXY', so Z also lies on (Y BD) and (XCD). Then

ADZX = ADCX = LZAC = LZY X,

implying DZ is tangent to (XY Z), as desired.

K3.3 — ISL 2022 C9

Let Z>( denote the set of nonnegative integers, and let f : ZQ>O — Z>o be a bijection such that for any
four nonnegative integers x1, T, y1, Yo satisfying f(z1,71) > f(22,%2), it holds that f(z; + 1,y1) >
flza 4+ 1,y2) and f(x1,y1 +1) > f(x2,y2 + 1).

Let N be the number of integer pairs (z,y) with 0 < z,y < 100 for which f(z,y) is odd. As f varies,
determine the smallest and largest possible value of N.

The minimum and maximum values are 2500 and 7500 respectively.
Proof of bounds: Note that f(z,y) < f(z + 1,y) for all  and y, else

fla,y) > fla+1Ly) > f(z+2,y) > -

10
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which is absurd. Similarly f(z,y) < f(x,y + 1).
Consider the process of placing the elements of Zx>¢ in the cells of Z2>0 in the order 0, 1, 2,

.., so that n is placed in cell (x,y) when f(x,y) = n. In this process, when n is placed in
(z,y), then the cells (x — 1,y) and (z,y — 1) must already have been labeled, or they will be
filled with a smaller number, contradicting the above. Hence the set of labeled cells will always
form a “chomp-like” structure.

Claim 3. Consider the moment cell (z,y) is filled with f(z,y) = n, and let f(z,y—1) = m.
In every other column with a positive number of labeled cells, exactly one cell was labeled
between when m and n were labeled.

Proof. We simply check that:

e If some nonempty column had no cell filled during this time, and its top cell is f(2/,y") <
m, then the cell (z/,y’ + 1) must be filled eventually, so f(z’,y’ + 1) > n. This is a clear
contradiction.

e If some nonempty column was filled twice, then its top two cells must satisfy m <
f(@,y) <nand m < f(2',y' + 1) < n. This is again a clear contradiction. O

Analogously, we have the reflected version of the above claim.

Claim 4. We always have

flx,y) + fle+1L,y+1)= flz+1,y) + f(z,y +1) + L.

Proof. Without loss of generality f(x,y+ 1) > f(z + 1,y). By Claim 1,

f(z,y+1) — f(x,y) = # nonempty columns when f(z,y + 1) placed
and f(x+1,y+1)— f(z+1,y) = # nonempty columns when f(z + 1,y + 1) placed.

Hence it suffices to show that between when f(z,y + 1) and f(z + 1,y + 1) are placed, the
number of nonempty columns increases by exactly once.

But by the reflected version of Claim 1, we note that the bottom row increases by exactly
one square between when f(z,y + 1) and f(z + 1,y + 1) are placed. Since the cells form a
chomp-like structure, this proves the claim. ]

Hence in any 2 x 2 square, there is either 1 or 3 odd terms. This readily establishes the
bounds of 2500 and 7500.

Constructions: We show:

Claim 5. Where r < n below, the function
flgn+ry)=[1+2+-+(@+yln+qg+(g+y+1D)r
works.
Proof. 1t is clear f is a bijection: for each m, we may find a unique value of s > 0 with
m=1+2+---+s)n+ R, where R< (s+ 1)n,
and pick =R (mod s+ 1) with 0 < ¢ <s,y=s—g¢, and r = | £ | < n.

s+1

11
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Then we may check that
flan+ry+1) = flgn+ry) =(g+y+1n+r
R
= 1 —
(s+1)n+ L+ 1J

g+y+1 ifr<n-—2

and f(qn+r+1Ly)— flgn+ry) = .
g+y+2 ifr=n-1

s+l ifR<(n—1)(s+1)
C|s+2 fR>(m—1)(s+1)

are increasing functions in m, which is sufficiently to verify the requested condition on f.

Claim 6. Where r < n below, the function
flan+ry)=[14+2+-+@+yn+y+(g+y+1Dr
works.
Proof. The proof is analogous to the above, where instead we verify
flgn+ry+1)— f(gn+r,y)=(@+y+1n+r+1
R
= (s+1)n+ LwrlJ +1

and f(gn+r+1,y)— flgn+ry)=qg+y+1=s+1

are increasing.

O]

Now taking n > 100 even in Claim 3 gives f(z,y) = x(y + 1) (mod 2) and n > 100 even in
Claim 4 gives f(z,y) = (x—1)(y—1)—1 (mod 2). The former is odd 2500 times and the latter

is odd 7500 times.

Remark. The above solution is entirely combinatorial, in contrast to the more analytical official
solution, which analyzes all vectors (k,¢) based on whether f(z,y) < f(z + k,y +¢) or f(x,y) >
fl@+ k,y + ¢) and finds that the vectors of the former and latter types are divided by a single
slope. It then comes to the following characterization of f:

For some «, f sorts (z,y) based on the value of x + ya. (For « rational, tiebreaking is
done by larger a- or y-coordinate, depending on the nature of f.)

We also have the more explicit expression
a i b
fe=ay+ Y [ 1]+ Sl
i=1 j=1

Claim 2 follows from this and thus the bound. We may construct 2500 by setting o =~ 199.999 and
7500 by setting a &~ 200.001.

§2.4 Solutions to MOP Test 4
K4.1 — ISL 2022 N3

12
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Let a > 2 and d > 2 be relatively prime integers. Let z1 = 1 and for k > 1, define

rr +d if a doesn’t divide zy,
Tr4+1 =

xp/a  if n divides xy.

Find the greatest positive integer n for which some term of the sequence is divisible by a™.

The answer is |log,(ap)].
I Claim 1. We have z; < ad for all k.
Proof. Starting from a number less than d, we can increase by d at most a — 1 times before

encountering a multiple of a. This multiple of a is less than ad, and after dividing by a, we end
up less than d again. O

Of course the above claim establishes the upper bound.

I Claim 2. We have z; = 1 for some k > 1.

Proof. The function f:{1,2,...,d —1} — {1,2,...,d — 1} defined by

d
f(n) = ntt € Z where ¢ > 0 minimal
a

is a bijection with inverse f~!(m) = am mod d. Hence f*(1) = 1 for some k.
Evidently for each i, there is a j > i with f(z;) = z;. Hence thereisa k > 1 with z;, =1. O

Let the elements before 1 in the sequence be

r r r—1
,a —d,a",a ", ..., L

Then we must have a” € (d, ad), which uniquely determines a”. The problem follows.

K4.2 — ISL 2022 C6

At MOP, there are a finite number of students who are grouped into different classrooms. At every
step, Po may remove an equal number of students from two classrooms and put them all in a new
empty classroom. Determine, in terms of the initial grouping, the smalest possible number of nonempty
classrooms he can obtain after a finite number of steps.

Let n be the total number of students and let ¢ be the greatest odd divisor of n. The answer
is 1 if ¢ divides the number of students in each class and 2 otherwise.

Remark. The intended solution goes along the lines of splitting the classes into groups of size
powers of two, and then combining them. However, the below solution still works and is stronger.

We cite the following problem:

Lemma (ISL 1994 C3)

Peter has three accounts in a bank, each with an integral number of dollars. He is only
allowed to transfer money from one account to another so that the amount of money in the
latter is doubled. Prove that Peter can always transfer all his money into two accounts.

13
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While there are at least three classrooms, Po can take any three of them and rearrange them
into two classrooms. Thus Po can arrange all the students into two classrooms. It suffices to
show that arranging the students into one classroom is possible if and only if ¢ divides all the
class sizes.

Proof of necessity: If initially there is a class whose size is not divisible by ¢, then there
will always be a class whose size is not divisible by ¢. Thus we cannot ever have a single class
of size n.

Proof of sufficiency: Divide all sizes by t, so we may assume n = 2* is a power of 2. As
above, arrange the students into two classes. Then if the classes have positive size a and b, we
must have vy(a) = vo(b).

Then the operation (a,b) — (2a,b — a) increments v5(a) = v2(b) until it no longer less than
k, at which point (a,b) = (0,2%) and we are done.

K4.3 — ISL 2022 A7

Let s(m) denote the sum of the digits of a positive integer m. Determine whether there exists a polynomial
P(x) =a2"+a, 12"t +--- +ayir + ag, for some n > 2, such that

® ag, a1, ..., ap_1 are positive integers, and

e for all positive integers k, s(k) + s(P(k)) is even.

The answer is no. We claim:

Claim. There are large positive integers C' and D such C > D > 0 such that if
Q(z) = Cz* + Ca® — D2® + Cz + C,

then the polynomial P(Q(z)) has all coefficients positive.

Proof. Note that (z* 4+ 23 + z + 1)" has terms of all degrees 0, 1, ..., z*" with coefficients at
least 1.

Then the modification (z* + 23 —ex? + 2+ 1)" decreases coefficients by a polynomial amount
in ¢ which tends to 0 as ¢ — 0T, so there is a sufficiently small choice of ¢ for which the signs
of the coefficients of (z* + 23 + x + 1)™ are not affected.

Then for large C and D ~ Ce, we may set Q(x) = Cz* +Cx3 — Dx? 4+ Cx+1, and the Q(x)"
term dominates. O

Then for r greater than the number of digits in all the coefficients of Q and P o ), we may
find constants a and b such that

s(Q(10")) =9r+a and s(P(Q(10"))) =b

since incrementing r creates an additional digit of 9 in Q(10") generated by the 22 term and no
additional nonzero digits in P(Q(10")). Then one of k = 10" and k = 10" ™! must fail.

Remark. Derek Liu claims an approach where you take massive J = 25 (mod 100) such that
a™~1J"~! has a leading digit of 6, and pick appropriate r such that in P(J - 10"), the ayJ* terms
are roughly concatenated. If we repick r such that the a”J" and a™~'J"~! terms intersect at one
digit, then 2 4+ 5 + 6 turns into 3 + 1, with different parity.

14
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§2.5 Solutions to ELMO
ELMO1 — ELMO 2023/1

Let m be a positive integer. Find, in terms of m, all polynomials P(z) with integer coefficients such that
for every integer n, there exists an integer k such that P(k) = n™.

For any positive d | n, the polynomials P(z) = (z + a)? and P(z) = (—x + a)? work. We
show they are the only solutions.

First, there exists ko so that P(kg) = 0. Instead consider the polynomial Q(z) = P(z — ko),
which has 0 as a root and but still contains every mth power in its range. We will show that
Q(z) is of the form either 2¢ or (—x)? for some d | n.

For each prime p, there is some k, with Q(kp) = p™. Since 0 is a root of @), we have z | Q(z)
for every x. In particular, k, | P(ky) = p™. This implies that

kp € {1apap2a s ’pm’ _17 —D, —P2a ey —pm} for all p.
By the Pigeonhole principle, one of the following must occur:

e There is some 0 < 7 < m such that k, = p" for infinitely many p. In particular, Q(z") =
2™ infinitely often, implying it holds for all real x, so Q(z) = z™/" for all z.

e There is some 0 < r» < m such that k, = —p" for infinitely many p. In particular,
Q(—2") = 2™ infinitely often, implying it holds for all real z, so Q(x) = (—z)™/" for all
x.

This completes the proof.

ELMO2 — ELMO 2023/2

Let a, b, and n be positive integers. A lemonade stand owns n cups, all of which are initially empty.
The lemonade stand has a filling machine and an emptying machine, which operate according to the
following rules:

e If at any moment, a completely empty cups are available, the filling machine spends the next a
minutes filling those a cups simultaneously and doing nothing else.

e If at any moment, b completely full cups are available, the emptying machine spends the next b
minutes emptying those b cups simultaneously and doing nothing else.
Suppose that after a sufficiently long time has passed, both the filling machine and emptying machine
work without pausing. Find, in terms of a and b, the least possible value of n.

The answer is 2(a + b — ged(a, b)). We view the problem through two models:

e the discrete model, where cups are filled instantly at the end of each a-minute period, and
cups are emptied instantly at the end of each b-minute period; and

e the continuous model, where cups are filled at a constant rate during each a-minute period,
and cups are emptied at a constant rate during each b-minute period.

We begin by assuming ged(a, b) = 1.
Lower bound for gcd(a,b) = 1: Assume that at some time, say t = 0, both the filling
machine and the emptying machine are starting their next cycle. Suppose that ¢ cups are filled

at t =0.
Using the discrete model, it suffices to consider when ¢ is a multiple of a or b.

15
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e At t = ka, the number of full cups is ¢ + (ka mod b), whose maximum value is ¢+ b — 1.
For the machines to continue working without pausing, we must have n > (c+b—1) + a.

e At t = (b, the number of full cups is ¢ — (/b mod a), whose minimum value is ¢ — a + 1.
For the machines to continue working without pausing, we must have 0 < (¢ —a+1) —b.

Thus n > 2(a+b—1).

Upper bound for ged(a,b) = 1: Assume n = 2(a + b — 1), and consider the continuous
model. Let ¢ be the time and L be the total amount of liquid in the cups.

e When t is an integer and L > a + b — 1, there is at most a — 1 total liquid in (at most
a) cups being filled and thus at least b totally filled cups. Hence the emptying machine is
active and decreases L by 1 per minute.

e When ¢ is an integer and L < a + b — 1, there is at least 1 total liquid (i.e. at most b — 1
empty space) in (at most b) cups being emptied and thus at least a totally empty cups.
Hence the filling machine is active and increases L by 1 per minute.

Each minute, either both machines are active, or L gets 1 closer closer to a+b— 1 (if it is not
equal to a + b — 1 already). The latter can only occur finitely many times, so L is eventually
constant.

Finish for ged(a,b) > 1: From the perspective of the discrete model, events only happen
when time is a multiple of gcd(a, b), and moreover the amount of total liquid is always a multiple
of ged(a, b).

Hence the problem for (a,b) is the problem for (a/ ged(a,b), b/ ged(a, b)), with time and liquid
scaled up by ged(a,b). It readily follows that the general answer is 2(a + b — ged(a, b)).

ELMO3 — ELMO 2023/3

Convex quadrilaterals ABCD, A1B,C1 D1, and Ay B>C5Ds are similar with vertices in order. Points A,
Ay, B, B are collinear in order, points B, By, (s, C' are collinear in order, points C, Cy, Dy, D are
collinear in order, and points D, Dy, Ay, A are collinear in order. Diagonals AC and BD intersect at
P, diagonals A1C, and By D intersect at P, and diagonals AsCs and B D- intersect at P». Prove that
points P, Py, and P, are collinear.

Let X be the center of spiral similarity between ABCD and A1B1C1D1, and let Y be the
center of spiral similarity between ABCD and AsBoCyDs. Let 6 := A XAB = L XBC =
AXCD = £XDA and ¢ := LABY = {BCY = LCDY = £DAY .

16
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Claim 1. 6 =¢';ie. X and Y are isogonal conjugates.

Proof. Assume for contradiction § < €' (without loss of generality). Then by the law of sines
in AXDA and AY AB, we have

XD  sin(/A-0) _sin(/A-0¢) YB

XA sin 6 ” sin 6’ YA
Multiplying cyclically gives

XD YB _

contradiction. O

A

| Claim 2. ABCD is cyclic.

Proof. Note
AAXD = A XAD + LADX = A XAD + {BAX = {BAD

and similarly L BXC = £BCD.
Since X has an isogonal conjugate,

ABAD = £LAXD = £BXC = £BCD. O

I Claim 3. ABCD is harmonic.

Proof. Observe that

YA AB
YC BC
YC CD
YA AD
Hence
_YA XC YO XA _AB BC CD AB
XA YA XC YC AD AD BC BC’
implying AB-CD = AD - BC. O

Now let P = Eﬂﬁ, P =ACinNB1Dy, P, = AsCo N ByDy. Let M be the midpoint of
AC and N the midpoint of BD.

17



Black Group Tests Eric Shen (July 17, 2023)

I Claim 4. X lies on (ABN) and (CDN); similarly Y lies on (ADN) and (BCN).
Proof. The first follows from L ANB = L{ADC = £ AX B, and the rest follow analogously. [
I Claim 5. P, X,Y, M, N are concyclic.

Proof. We have
AXNP=4KXAB=4AXBC=4£XMP,

implying X € (PMN), and similarly Y € (PMN). O
Finally
AXPY =LXNY =4LXNA+ LANY = LXBA+ LADY = 20,
SO
APIPPy, = APIPX + AXPY + AYPP, = (—9) + 20 + (—9) =0°,
as desired.

ELMO4 — ELMO 2023/4

Let ABC be an acute scalene triangle with orthocenter H. Line BH intersects AC at E and line CH
intersects AB at F. Let X be the foot of the perpendicular from H to the line through A parallel to
EF. Point By lies on line X F such that BB is parallel to AC, and point C; lies on line X E such that
C(C is parallel to AB. Prove that points B, C, By, C; are concyclic.

We present a few solutions. In each, let A’ = BB; N CCY, so ABA'C' is a parallelogram.

First solution (author) Since A’H | EF, we have X, H, A’ collinear. But
AB1XA' = AFFEH = {FCB = £ X A'By,

implying B1X = B1A’. Similarly C1X = C1 A, so B1Cy L XHA'.
This means BC and B;C; are antiparallel in ZA’, so BB{CC} is indeed cyclic.

18



Black Group Tests Eric Shen (July 17, 2023)

Second solution (mine) Let M be the midpoint of BC. Since AEF X is an isosceles trapezoid
and ME = MF,

AB1FM = AXFM = AMFEA = A{ECM = £B1BM,

so By € (BMF). Similarly C; € (CME).
But since AB - AF = AC - AE, line AM is the radical axis of (BMF) and (CME). In
particular, A’ lies on this radical axis, so A'B - A'By; = A'C - A/C as needed.

Third solution (author) Let M be the midpoint of BC'.

Let ¢ be the perpendicular bisector of EF (so M € f). Let By is the reflection of By in £ and
let M’ € ¢ be the midpoint of BiBs. Since XF and AE are reflections in ¢, we know By lies
on AC. If M # M’, this implies £ = MM’ || AC, which is absurd. Hence M is the midpoint of
B1Bs, i.e. ByM 1 (. Similarly C1M L /.

Then B1C | EF, implying BC and BC] are antiparallel in ZA’, which gives the desired.

ELMO5 — ELMO 2023/5

Find the least positive integer M for which there exist a positive integer n and polynomials Py (z), Py (x),
.., Pp(x) with integer coefficients satisfying

Mz = Pi(2) + Py(x)® + -+ + P, (2).

The minimum value of M is 6, achieved by
6z = (z+ 17>+ (x—1)3 + (—2) + (—2)>.

For the lower bound, write

We will show 6 | M, which suffices.
In Z[x]/(2% +x +1), there are integers ax and by, for each k such that Py(x) = apz +bg. Then

n

Mx = Z(akx + bk)s
k=1

I
M=

[ai + b} + 3ajbrx + 3agbj(—z — 1)]

ol

3|

—_

[a% + bz — 3akbi + 3akbk(ak — bk)x] s

>
Il
—

so we must have

M = Z3akbk(ak — b).
k=1

But 3agbi(ar — bx) is a multiple of 6 for all integers aj and by, so 6 | M.

I Remark. Equivalently, one may substitute a primitive third root of unity for x.
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ELMO6 — ELMO 2023/6

For a set S of positive integers and a positive integer n, consider the game of (n,S)-nim, which is
as follows. A pile starts with n watermelons. Two players, Deric and Erek, alternate turns eating
watermelons from the pile, with Deric going first. On any turn, the number of watermelons eaten must
be an element of S. The last player to move wins. Let f(S) denote the set of positive integers n for
which Deric has a winning strategy in (n, S)-nim.

Let T be a set of positive integers. Must the sequence

T, f(T), f(f(T)), ...

be eventually constant?

Yes, the sequence must be eventually constant. In what follows, let S = Z>o \ S, so f(S) =
S+ f(95) for all S. Note that S C f(S) always, so the limit f°°(T") is well-defined.

Claim 1. Let m be the smallest positive integer in T. If all multiples of m are in f°°(T),

then f(T) = f(T).

Proof. Since T' C f*°(T), this means all multiples of m are in T. However, 1, 2, ..., m — 1
are in 7. We may then compute that f(7') is exactly the set of non-multiples of m, implying
J(T) = f(T). O

Claim 2. If there are a and b with a,b € f>°(T) but a+b € f>(T), then fI+3(T) = f>°(T)
for some j (defined below).

Proof. We take j as the index for which n € f/(T) <= n € f*°(T) for n < a+ b (which must
exist since S C f(9) always).
For n > a + b, note:

e Ifn—a—b¢ fITY(T) thenn = (a+0b) + (n—a—1b) € fIYT).
e Ifn—a—be fItYT), thenn—b=(n—a—b)+ac fI+%(T) so (n—b) + b € fI+3(T).

Thus all n > a + b are in f773(T) C f°°(T), implying fi+3(T) = f(T). O

If T = {0} then we are already done. Otherwise m exists, we may check that m € fo°(T).
Then:

e If all multiples of m are in f°(T"), then Claim 1 finishes.

e Otherwise, let ¢m be the smallest multiple of m not in f°°(7"). Taking a = m and
b= (£ —1)m in Claim 2 finishes.

This completes the proof.
Remark. If all multiples of m are in f°°(7T'), then Claim 1 establishes that f(T) = f?(T). Other-

wise, the argument in Claim 1 restricted to [1, ¢m] shows that f(T) N [1,¢m] = f<(T)N[1,¢m], i.e.
we may take j = 1 in Claim 2. This establishes that f4(T) = f°(T') for all T

Remark. It has been claimed by Colin Tang (independently), Justin Lee, and Espen Slettnes that
F2(T) = f4(T) for all T, but I have yet to review a proof of this claim.
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§2.6 Solutions to Mock IMO
MIMO1 — ISL 2022 A2

Let & > 2 be an integer. A nonempty set S of real numbers has the property that every element s € S
can be written as the sum of k distinct elements of S that are not equal to s. Find the smallest possible
value of |S], in terms of k.

The smallest value of |S| is k + 4.

Lower bound: Let M be the maximal element of S and let A be the set of size k& not
containing M that sums to M. Similarly let m be the minimal element and B the set summing
to m.

Let o(T') denote the sum of the elements of set 7. Consider the sets

X =S\ (Au{mMm})
and Y =S\ (BU{m}).

Then we have

(X[ =Y|=I[5]-(k+1),
o(X)=0(S) —2M,
and o(Y)=0o(S)—2m.

In particular,
oY)—o(X)=2(M —m).

But X and Y have the same size and each contain elements in the range [m, M|, so we require
|X| = |Y| > 3, implying |S| > k + 4.

Construction: For each ¢ > 3, we may check that S = {+1,+2,...,£¢} works for k = 20—4
and S ={0,+1,..., £/} works for k = 2¢ — 3.

MIMO2 — ISL 2022 A6

Find all rational numbers ¢ for which there exists a function f : R — R satisfying

fle+f)=fle)+fly) and [f(z)#qz

for all real numbers z, y, z.

The ¢ tht fail are of the form ”TH for some integer n. The rest work.

Proof of necessity: Setting © = nf(0) and y = 0 gives f((n +1)f(0)) = f(nf(0)) + £(0),
implying inductively that f(nf(0)) = (n + 1)f(0) for all integers n. If ¢ = "TH, then taking
z =nf(0) gives f(z) = qz.

Proof of sufficiency: If ¢ # ”TH for any n, it is equivalent to say q% ¢ Z. In particular,
any arithmetic progression with common difference ¢ — 1 does not hit every (positive) integer.
(If ¢ =1, take f(z) = « + 1. Henceforth g # 1.)

Define f as follows:
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(i) For r € [0,1), take f(r) as the smallest positive integer not in the progression ..., a_a,
a_i, ag, ai, az, ... defined by a, = qr + (¢ — 1)n.

(ii) For all z, take f(z) = |z| + f(z — |z]).

Since f(y) is always an integer, it is easy to check f satisfies the functional equation.
Moreover, if f(z) = gz and z = n + r where n = |z] and r € [0, 1), then

n+ f(r)=qn+r) = f(r)=qr+(q—1)n,
which is a situation we explicitly avoid.

MIMO3 — ISL 2022 G8

Let AA'BCC’'B’ be a convex cyclic hexagon such that line AC is tangent to the incircle of AA’B'C’
and line A’C” is tangent to the incircle of AABC. Let lines AB and A’B’ intersect at X and let lines
BC and B’C’ intersect at Y. Prove that if X BY B’ is a convex quadrilateral, then it has an incircle.

Let Q be the circumcircle, and let w and w’ denote the incircles of AABC and AA’B'C’.

Claim 1. B, B’, I, I are concyclic.

Proof. Let BI and B'I’ intersect €2 again at M and M’. It is clear MM’ || IT’ (since both make
equal angles with AC' and A’C"), so the concyclicity follows from Reim. O

A

Cl
Let a common external tangent to w and w’ intersect Q at P and Q.

Claim 2. P, Q, I, I are concyclic.

Proof. By Poncelet’s porism there are R and R’ on Q so that APQR has incircle w and APQR’
has incircle w’. Then

ZPIQ =90° + §ZPRQ = 90° + 5 ZPR'Q = LPI'Q,

implying the concyclicity. O
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Let P’Q’ be the other common external tangent, and let X = II’ N PQ N P'Q’ be the
exsimilicenter of w and w’. It follows from PQII’ and P'Q'II’ cyclic that there is an inversion
U at X swapping (I,I'), (P,Q), (P’,Q’). This inversion must also swap (B, B’).

In particular, BB’ passes through the exsimilicenter X of w and w’. By converse Monge (say,
via a phantom circle argument), we conclude.

Remark. A solution by Fedir Yudin constructs J = BINB’I’ and shows via a length computation
that J is equidistant from the four lines. There is also an approach with Desargue involution.

MIMO4 — ISL 2022 G2

Point P lies in the interior of acute triangle ABC' such that lines AP and BC' are perpendicular. Points
D and E on side BC satisfy PD || AC and PE || AB, and points X # A and Y # A lie on the
circumcircles of AABD and AACE, respectively, such that DA = DX and FA = EY. Prove that
points B, C, X, and Y are concyclic.

Note the foot from A to BC has equal power to (ABD) and (ACE), thus the altitude is the
radical axis and so A’ = BX N CY the reflection of A in BC does as well. This finishes.

MIMO5 — ISL 2022 N5

For each 1 < i <9 and positive integer T, let d;(T) denote the total number of times the digit i appears
when all multiples of 2023 between 1 and T inclusive are written out in base 10. Prove that there are
infinitely many positive integers T such that there are exactly two distinct values among d; (1), do(T),

.., do(T).

Let T = 10™¥(2923) _ 1 for any positive integer n. Let d;j(T) denote the number of times the
digit i appears in the jth digit (where j = 0 denotes the units digit, ; = 1 denotes the tens
digit, and so on).

I Claim 1. There are two distinct values among dyo(7), d2o(T), ..., dgo(T).

Proof. The units digits 3, 6, 9 each appear one more than each of the remaining digits. O
I Claim 2. For each i, we have d;o(T) = d;1(T) = dio(T) = - - -

Proof. For each n with 2023 | n whose n¢(2023)th digit from the right is equal to d, note that
the cyclic shift 10n — dT is also divisible by 2023. Hence if we split the numbers between 1 and
T into equivalence classes based on cyclic shifts, each equivalence class contributes to d;g, d;1,
... equally. This proves the claim. O

The two above claims combined solve the problem.

MIMO6 — ISL 2022 C7

Let s be a positive integer. Lucy and Lucky play the following game on a blackboard. Lucy ini-
tially writes s integer-valued 2023-tuples on the board. Lucky then gives Lucy an integer-valued 2023-

tuple. Afterwards, Lucy can repeatedly take any two (not necessarily distinct) tuples (v1, ..., v2023) and
(w1, ..., wag23) on the blackboard and writes the tuples
(v1 + w1, ..., V2023 + wao23) and  (max(vy,wi),. .., max(veo2s, wao23)
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on the board. Lucy wins if she can write Lucky’s tuple on the board in a finite number of steps.
Determine the smallest value of s for which Lucy has a winning strategy.

TODO
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