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§1 Problems

§1.1 MOP Quiz 1

Problem B1.1 (Bulgaria TST 2004/3/2). Let n ≥ 4 be a positive integer. The
(
2n
2

)
edges of

a complete graph with 2n vertices are to be colored blue and red, in such a way that

• no triangle has all three edges blue; and

• no complete subgraph on n vertices has all its edges red.

In such a coloring, determine the minimum possible number of blue edges.

Problem B1.2 (Brazil 2012). Find the least nonnegative integer b such that there exists a

nonnegative integer n for which the last 2021 decimal digits of bn are all 1.
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§1.2 MOP Test 2

Problem B2.1. Does there exist a positive integer m for which the equation

(a3 − a)(b3 − b) = mc2

has infinitely many positive integer solutions (a, b, c) in which a 6= b?

Problem B2.2 (ISL 2020 A5). A magician wishes to perform the following trick.

The magician announces a positive integer n, along with 2n real numbers x1 <

· · · < x2n to the audience. Then an audience member secretly chooses a polynomial

P (x) of degree n with real coefficients and gives the magician the values P (x1), . . . ,

P (x2n) in any order. After that, the magician announces the polynomial P (x).

Can the magician perform this trick?

Problem B2.3 (ISL 2020 G7). Let P be a point on the circumcircle of acute triangle ABC.

Let D, E, and F be the reflections of P in the A-midline, B-midline, and C-midline. Let ω be

the circumcircle of the triangle formed by the perpendicular bisectors of AD, BE, and CF .

Show that the circumcircles of 4ADP , 4BEP , 4CFP , and ω share a common point.

§1.3 MOP Test 3

Problem B3.1 (ISL 2020 N4). For any odd prime p and integer n, let dp(n) denote the

remainder when n is divided by p. The sequence (x0, x1, . . .) is a p-dop if x0 is a positive integer

coprime to p, and xn+1 = xn + dp(xn) for all n ≥ 0. Do there exist infinitely many primes p

such that there exist p-dops (a0, a1, . . .) and (b0, b1, . . .) for which. . .

(a) . . . an < bn infinitely often and an > bn infinitely often?

(b) . . . a0 < b0, but an > bn for all n ≥ 1.

Problem B3.2 (ISL 2020 G6). Let ABC be a triangle with AB < AC, incenter I, and A-

excenter IA. The incircle meets BC at D. Define E = AD ∩ BIA and F = AD ∩ CIA. Show

that the circumcircles of 4AID and 4IAEF are tangent to each other.

Problem B3.3 (ISL 2020 A2’). Let A denote the set of polynomials in 100 variables x1, . . . ,

x100 with integer coefficients.

(a) Prove that any monomial xe11 x
e2
2 · · ·xe100100 with e1 + e2 + · · ·+ e100 ≥ 4951 can be expressed

in the form

p1q1 + p2q2 + · · ·+ p100q100

where pi, qi ∈ A for all i, and qi is a symmetric polynomial satisfying qi(0, . . . , 0) for all i.

(b) Prove that x12x
2
3 · · ·x99100 cannot be expressed in this way.

§1.4 MOP Test 4

Problem B4.1. Can you find 15 positive integers (not necessarily distinct) with product k,

such that if each of the integers is increased by 1, the new product is 2021k?

Problem B4.2 (ISL 2020 C4). The Fibonacci numbers F0, F1, . . . are defined by F0 = 0,

F1 = 1, and Fm+2 = Fm+1 + Fm for all m ≥ 0.

Let n ≥ 2 be a fixed integer and suppose that S is a set of integers such that each element of

{F2, F3, . . . , Fn} can be written as the difference of two elements in S. How small can |S| be?
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Problem B4.3 (ISL 2020 N6). For a positive integer n,

• let d(n) be the number of positive integer divisors of N , and

• let ϕ(n) be the number of positive integers at most n which are relatively prime to n.

Does there exist a constant C such that

ϕ(d(n))

d(ϕ(n))
≤ C

for all n ≥ 1?

§1.5 MOP Quiz 5

Problem B5.1 (Brazil Undergrad 2010 Olympiad). Let k be a positive integer for which

p = 60k+7 is prime. Suppose that p divides 102n+8 ·10n+1 for some positive integer n. Show

that k and n are even.

Problem B5.2 (ISL 2020 G5). Let ABCD be a cyclic quadrilateral. Points K, L, M , N are

chosen on AB, BC, CD, DA such that KLMN is a rhombus with KL ‖ AC and LM ‖ BD.

Let ωA, ωB, ωC , ωD be the incircles of 4ANK, 4BKL, 4CLM , 4DMN . Prove that the

common internal tangents to ωA and ωC and the common internal tangents to ωB and ωD are

concurrent.

§1.6 ELMO

Problem ELMO1 (Eric Shen). Let ABC be a triangle, and let P and Q lie on sides AB and

AC such that the circumcircle of 4APQ is tangent to segment BC at a point D. Let E lie on

segment BC such that BD = EC. Line DP intersects the circumcircle of 4CDQ again at X,

and line DQ intersects the circumcircle of 4BDP again at Y . Prove that points D, E, X, Y

are concyclic.

Problem ELMO2 (Maxim Li). Let n ≥ 2 be an integer and let a1, a2, . . ., an be integers such

that n | ai − i for all integers 1 ≤ i ≤ n. Prove there exists an infinite sequence b1, b2, . . . with

bi ∈ {a1, a2, . . . , an} for each i, such that

∞∑
i=1

bi
ni
∈ Z.

Problem ELMO3 (Maxim Li). Each cell of a 100× 100 grid is colored with one of 101 colors.

A cell is diverse if, among the 199 cells in its row and column, every color appears at least once.

Determine the maxmum possible number of diverse cells.

Problem ELMO4 (Brandon Wang). Suppose the set of positive integers is partitioned into

n ≥ 2 disjoint arithmetic progressions S1, S2, . . ., Sn with common differences d1, d2, . . ., dn.

Prove that there exists exactly one index 1 ≤ i ≤ n such that∏
j 6=i

dj ∈ Si.

Problem ELMO5 (Sean Li). Let n and k be positive integers. Two infinite sequences (si)

and (ti) are equivalent if si = sj if and only if ti = tj for all positive integers i and j, and a

sequence (ti) has equi-period k if t1, t2, . . . and tk+1, tk+2, . . . are equivalent. In terms of n and

k, how many sequences of equi-period k are there in the set of sequences with each entry in the

set {1, 2, . . . , n}, up to equivalence?
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Problem ELMO6 (Maxim Li). In triangle ABC, points D, E, F lie on segments BC, CA,

AB, respectively, such that each of the quadrilaterals AFDE, BDEF , CEFD has an incircle.

Prove that the inradius of 4ABC is twice the inradius of 4DEF .

§1.7 Mock IMO

Problem MIMO1 (ISL 2020 C2). In a regular 100-gon, 41 vertices are colored black and the

other 59 vertices are colored white. A quadrilateral is weird if it has three vertices of one color

and one vertex of the other color.

Prove that there exist 24 pairwise disjoint weird quadrilaterals. (Two quadrilaterals are

disjoint if they have no common vertices and their interiors do not intersect.)

Problem MIMO2 (ISL 2020 A3). Let a, b, c, d be positive real numbers satisfying (a+ c)(b+

d) = ac+ bd. Find the smallest possible value of

a

b
+
b

c
+
c

d
+
d

a
.

Problem MIMO3 (ISL 2020 N7). Let S be a set of n ≥ 3 positive integers, none of which

is the sum of two different numbers in S. Prove that there exists a permutation of S in which

none of the middle n− 2 integers divides the sum of its neighbors.

Problem MIMO4 (ISL 2020 G3). Let ABCD be a convex quadrilateral with min{∠B,∠D} >
90◦ and ∠A = ∠C. Points E and F are the reflections of A in BC and CD. Segments AE and

AF meet line BD at K and L.

Prove that the circumcircles of 4BEK and 4DFL are tangent to each other.

Problem MIMO5 (ISL 2020 N5). Determine all functions f : {1, 2, . . .} → {0, 1, 2, . . .} such

that

• f(xy) = f(x) + f(y) for all positive integers x and y, and

• there exists an infinite set S of positive integers such that f(a) = f(b) whenever a+b ∈ S.

Problem MIMO6 (ISL 2020 C8). Anastasia and Bananastasia play a game on a board as

follows. Initially, the board contains 2020 copies of the number 1. Each round proceeds as

follows:

1. Anastasia erases two numbers x and y from the board.

2. Bananastasia writes one of x+ y and |x− y| on the board.

After each round, the game ends if one of the following holds:

• one number on the board is larger than the sum of all other numbers on the board, or

• all numbers on the board are zeroes.

After the game ends, Bananastasia must give Anastasia one slice of banana bread for every

number remaining on the board. How many slices of banana bread can Anastasia guarantee,

assuming optimal play from both players?
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§1.8 MOP Quiz 6

Problem B6.1 (ISL 2020 G1). Let ABC be an isosceles triangle with CA = CB, and let D be

a point on side AB with AD < DB. Let P and Q be the projections from D to CB and CA.

The perpendicular bisector of PQ meets segment CQ at E, and the circumcircles of 4ABC
and 4CPQ meet at F 6= C.

Show that if P , E, F are collinear, then ∠C = 90◦.

Problem B6.2 (ISL 2020 A1). Let n be a positive integer. Determine the smallest real number

C such that, for all real x,

n

√
x2n + 1

2
≤ C(x− 1)2 + x.

§1.9 MOP Test 7

Problem B7.1 (ISL 2020 G4). Let n ≥ 6 be an integer and D1, . . . , Dn be pairwise disjoint

closed disks in the plane with radii R1 ≥ · · · ≥ Rn. For each i ∈ {1, . . . , n}, let Pi be a point on

Di. Let O be a point in the plane. Prove that

OP1 +OP2 + · · ·+OPn ≥ R6 +R7 + · · ·+Rn.

Problem B7.2 (ISL 2020 C5). Let p be an odd prime, let N = 1
4(p3 − p) − 1, and let S be

a subset of {1, . . . , N}. Show that there exists an integer a ∈ {1, . . . , p − 1} such that for all

positive integers n ∈ N ,
|S ∩ {1, . . . , n}|

n
6= a

p
.

Problem B7.3 (ISL 2020 G8). Let ABC be a triangle with incenter I and circumcircle Γ.

Circles ωB passing through B and ωC passing through C are tangent at I. Let ωB meet minor

arc AB of Γ at P and AB at M 6= B, and let ωC meet minor arc AC of Γ at Q and AC at

N 6= C, Rays PM and QN meet at X. Let Y be a point such that Y B is tangent to ωB and

Y C is tangent to ωC .

Show that A, X, Y are collinear.
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§2 Solutions

§2.1 Solutions to MOP Quiz 1

Problem B1.1 (Bulgaria TST 2004/3/2)

Let n ≥ 4 be a positive integer. The
(
2n
2

)
edges of a complete graph with 2n vertices are

to be colored blue and red, in such a way that

• no triangle has all three edges blue; and

• no complete subgraph on n vertices has all its edges red.

In such a coloring, determine the minimum possible number of blue edges.

The answer is 10 for n = 4 and n + 5 for n ≥ 5. In what follows, we only draw blue edges

and omit the red edges. The condition is that there are no triangles, and no independent set of

size n.

Construction: For n = 4, consider

For n ≥ 5, consider

· · ·

n− 5

Bound: One may show via exhaustion that:

• In a triangle-free connected graph on 6 vertices there is an independent set of size 3.

• In a triangle-free connected graph on 8 vertices and ≤ 9 edges, there is an independent

set of size 4. (This is very annoying.)

• In a triangle-free connected graph on k ∈ {3, 5, 7} vertices, we can find an independent

set of size bk/2c.
These already solve n = 4, so we focus on n ≥ 5.

Say a graph with k vertices is spacious if there is an independent set of size ≥ k/2. Let the

graph contain A spacious connected components and B non-spacious connected components.

Do not count singletons. (Observe that non-spacious components must contain an odd cycle,

so they have size ≥ 5.)

One can easily establish the bounds 2A+ 5B ≤ 2n and #edges ≥ 2n−A, so if A ≤ n− 5 we

are already done. Henceforth assume A ≥ n− 4, implying B = 1. (Of course, if B = 0 we are

trivially done by choosing independent subsets from each connected component.)

Consider this single non-spacious component. Since A ≥ n − 4, this component contains at

most 8 vertices.

• If it contains an odd number of vertices, there must also be a singleton in the graph by

parity. Then choosing this singleton along with almost half the vertices in this component

(by the observations we made earlier) allows us to find a size-n independent set of the

original graph, contradiction.

6
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• If it contains an even number of vertices, by the observations it has 8 vertices and ≥ 10

edges. It readily follows that #edges ≥ 2n−A+ 2 ≥ n+ 6, so we are done.

Problem B1.2 (Brazil 2012)

Find the least nonnegative integer b such that there exists a nonnegative integer n for which

the last 2021 decimal digits of bn are all 1.

Mod spamming shows that the problem condition is equivalent to

• b ≡ 7 (mod 16),

• b ≡ 1 (mod 5), and

• b 6≡ 1 mod 25.

§2.2 Solutions to MOP Test 2

Problem B2.1

Does there exist a positive integer m for which the equation

(a3 − a)(b3 − b) = mc2

has infinitely many positive integer solutions (a, b, c) in which a 6= b?

Yes, m = 2 works.

First, we may generate infinitely many solutions (u, v) to u2−8v2 = 9, with u odd, by starting

with (9, 3) and using (u, v) 7→ (3u+ 8v, u+ 3v).

For each such pair, (a, b, c) = (u−12 , u+1
2 , ·u2−14 · v) works by noting

(a3 − a)(b3 − b) =
(
u−3
2 · u−12 · u+1

2

)
·
(
u−1
2 · u+1

2 · u+3
2

)
=
(
u2−1
4

)2
· u2−94

=
(
u2−1
4

)2
· 2v2.

Problem B2.2 (ISL 2020 A5)

A magician wishes to perform the following trick.

The magician announces a positive integer n, along with 2n real numbers

x1 < · · · < x2n to the audience. Then an audience member secretly chooses a

polynomial P (x) of degree n with real coefficients and gives the magician the

values P (x1), . . . , P (x2n) in any order. After that, the magician announces the

polynomial P (x).

Can the magician perform this trick?

No, the magician cannot perform this trick.

The audience member has enough freedom to select a polynomial P of degree ≤ n with the

property that

P (x1) + P (x2) = P (x3) + P (x4) = · · · = P (x2n−1) + P (x2n) = 0.

7



Blue Group Tests Eric Shen (July 20, 2021)

(Indeed, the coefficients will generate a homogeneous system of n linear equations with n + 1

variables, which has a nontrivial solution.)

Now there are roots in the intervals [x1, x2], . . . , [x2n−1, x2n], so degP = n. Finally the values

P (x1), . . . , P (x2n) are not all zero, so the magician cannot discern between P and −P .

Problem B2.3 (ISL 2020 G7)

Let P be a point on the circumcircle of acute triangle ABC. Let D, E, and F be the

reflections of P in the A-midline, B-midline, and C-midline. Let ω be the circumcircle of

the triangle formed by the perpendicular bisectors of AD, BE, and CF .

Show that the circumcircles of 4ADP , 4BEP , 4CFP , and ω share a common point.

Let H be the orthocenter and HAHBHC the orthic triangle. Let the negative inversion at H

sending 4ABC to 4HAHBHC send P to Q. I claim Q is the desired concurrence point.

First, Q lies on the circles (ADP ), (BEP ), (CFP ) by noting

HP ·HQ = HA ·HHA = HB ·HHB = HC ·HHC .

A

B C

P

Q

HA

D

EF

X

Y

Z

H

To show Q lies on ω, it will suffice to show the Steiner line exists, i.e. the reflections X, Y , Z

of Q over the perpendicular bisectors of AD, BE, CF are collinear. In fact, I claim P , X, Y ,

Z are all collinear.

Observe that ]XPD = ]APQ = ]APH, so

]Y PZ = ]Y PE + ]FPZ + ]EPF

= ]BPH + ]HPC + ]CAB = 0◦.

By symmetry we are done.

§2.3 Solutions to MOP Test 3

8
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Problem B3.1 (ISL 2020 N4)

For any odd prime p and integer n, let dp(n) denote the remainder when n is divided

by p. The sequence (x0, x1, . . .) is a p-dop if x0 is a positive integer coprime to p, and

xn+1 = xn + dp(xn) for all n ≥ 0. Do there exist infinitely many primes p such that there

exist p-dops (a0, a1, . . .) and (b0, b1, . . .) for which. . .

(a) . . . an < bn infinitely often and an > bn infinitely often?

(b) . . . a0 < b0, but an > bn for all n ≥ 1.

The answer to both parts is yes.

Solution (a) Any prime p ≡ 3, 5 (mod 8) works. For such p, two is not a quadratic residue,

so 2
p−1
2 ≡ −1 (mod p).

I claim the p-dops starting at 2 and p− 2 work. Observe ai ≡ 2i+1 (mod p) and bi ≡ −2i+1

(mod p) for each i. Then ai+(p−1)/2 = bi for each i, so

d(a0) + · · ·+ d(ap−2) = d(b0) + · · ·+ d(bp−2) ≡ 0 (mod p).

Observe, then, that for some N , we have ap−2 = Np + 1, ap−1 = Np + 2, bp−2 = Np − 1,

bp−1 = Np+ p− 2.

Moreover the sequences (ap−1, ap, . . .) and (bp−1, bp, . . .) are the sequences (a0, a1, . . .) and

(b0, b1, . . .) shifted by Np, so we always have ak(p−1)+p−2 > bk(p−1)+p−2 and ak(p−1)+p−1 <

bk(p−1)+p−1, as desired.

Solution (b) By Kobayashi infinitely many primes divide the sequence

21 − 1, 23 − 1, 25 − 1, . . . .

For such primes p, we have 2odd ≡ 1 (mod p), so m := ord(2 mod p) is odd.

If we consider equivalence classes modulo p where r and s are in the same class if r/s is a

power of two. Each class contains m elements, so there are (p− 1)/m classes. The sum of the

elements in all classes is p(p− 1)/2, and since m is odd this not a multiple of (p− 1)/m.

It follows that two equivalence classes have different sums, so for some two starting indices

a0 and b0, we have d(a0) + · · · + d(ap−2) and d(b0) + · · · + d(bp−2) are different multiples of p.

Without loss of generality the former is larger than the latter.

Then start at a0 and N+b0 for some very large N , so initially the first sequence is larger, but

eventually the second is larger. Then there is some maximal index i with ai < bi, so starting

instead at ai and bi solves the problem.

Problem B3.2 (ISL 2020 G6)

Let ABC be a triangle with AB < AC, incenter I, and A-excenter IA. The incircle meets

BC at D. Define E = AD ∩ BIA and F = AD ∩ CIA. Show that the circumcircles of

4AID and 4IAEF are tangent to each other.

Let IB and IC be the B− and C-excenters, and let S = BC ∩ IBIC . Let (IAIBIC) and

(BICIA) intersect again at L. By radical axis theorem IA, L, S collinear, and also ∠IAS =

∠IDS = ∠ILS = 90◦, so A, I, D, L, S are concyclic.

9
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A

B C
I

D

IA

E

F

IB

IC

L

S

E′

F ′

Let lines BI and CI meet (AID) again at E′ and F ′. Since AIBIC is cyclic, we have

SE′ ‖ BIC by Reim’s. Analogously SF ′ ‖ CIB.

Finally,

]IALE = ]IAFE = ]CIBIC + ]SAD

= ]DIB + ]SID = ]SIE′ = ]SLE′,

so L ∈ EE′, and similarly L ∈ FF ′. A homothety at L sends (AID) to (IAEF ), so they are

tangent at L.

Problem K3.3 (ISL 2020 A2’)

Let A denote the set of polynomials in 100 variables x1, . . . , x100 with integer coefficients.

Find the smallest integer N such that any monomial xe11 x
e2
2 · · ·xe100100 with e1+e2+· · ·+e100 ≥

N can be expressed in the form

p1q1 + p2q2 + · · ·+ p100q100,

where pi, qi ∈ A for all i, and qi is a symmetric polynomial satisfying qi(0, 0, . . . , 0) = 0 for

all i.

The answer is
(
100
2

)
+ 1 = 4951.

Proof N ≥ 4951 work: I contend we can express all monomials of degree e1+· · ·+e100 ≥ 4951

in the form

p1S1 + p2S2 + · · ·+ p100S100,

where Si is the ith elementary symmetric polynomial (S1 = x1 + · · ·+ x100, S2 = x1x2 + · · ·+
x99x100, etc.).

Say the character of a monomial xe11 · · ·xe100100 is e21 + e22 + · · ·+ e2100. We will strong induct on

character, with the base case as follows: If all 100 variables appear with positive exponent, we

are done by factoring out x1x2 · · ·x100.
Now assume without loss of generality e1 ≥ e2 ≥ · · · ≥ e100 = 0. We can find an i with

ei+1 ≤ ei − 2; otherwise, e100 = 0, e99 ≤ 1, e98 ≤ 2, . . . , and thus e1 + · · · + e100 ≤ 4950,

contradiction. Then subtract off

xe1−11 xe2−12 · · ·xei−1i x
ei+1

i+1 x
ei+2

i+2 · · ·xe100100 · Si.

10
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The remaining monomials have strictly smaller character, so by the inductive hypothesis they

are already expressible in the desired form.

Proof N = 4950 fails: I claim the monomial x12x
2
3 · · ·x99100 does not have this property.

Decompose the polynomials pi into monomials and qi into homogeneous polynomials, so we

have

x12x
2
3 · · ·x99100 =

∑
i

pi(x1, . . . , x100) · qi(x1, . . . , x100),

with pi monomials and qi homogeneous and symmetric. Ignore all terms where deg pi+deg qi 6=
4950, so all terms in the expansion have degree 4950.

Now consider the following, where we sum over permutations π of {1, . . . , 100}:∑
π

sgn(π) · x1π(2) · · ·x99π(100) =
∑
i

qi(x1, . . . , x100) ·
∑
π

pi(xπ(1), . . . , xπ(100)) · sgn(π),

However, observe the following:

Claim. If pi is a monomial with deg pi ≤ 4949, then∑
π

pi(xπ(1), . . . , xπ(100)) · sgn(π) = 0.

Proof. Two exponents must be equal; otherwise, deg pi ≥ 0+1+ · · ·+99 = 4950, contradiction.

If the exponents of xi and xj are equal, we can pair permutations that swap i and j, which will

cancel out in the summation.

It follows that ∑
π

sgn(π) · x1π(2) · · ·x99π(100) ≡ 0,

which is absurd.

§2.4 Solutions to MOP Test 4

Problem B4.1

Can you find 15 positive integers (not necessarily distinct) with product k, such that if

each of the integers is increased by 1, the new product is 2021k?

Yes: (
2

1

)10

·
(

5

4

)3

· 101

100
· 2021

2020
= 2021.

Problem B4.2 (ISL 2020 C4)

The Fibonacci numbers F0, F1, . . . are defined by F0 = 0, F1 = 1, and Fm+2 = Fm+1 +Fm
for all m ≥ 0.

Let n ≥ 2 be a fixed integer and suppose that S is a set of integers such that each element

of {F2, F3, . . . , Fn} can be written as the difference of two elements in S. How small can

|S| be?

The answer is k = dn2 e+ 1, achieved by S = {F0, F2, F4, . . . , F2k−2}.

11
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First solution Draw a graph G on the elements of S where we connect u and v whenever

|u − v| ∈ {F1, F3, F5, . . .} is a Fibonacci number with odd index. Thus we need at least dn2 e
edges drawn.

Now I claim this graph is acyclic: consider a cycle with longest edge Ft, and let the other

edge lengths be Fx1 , . . . , Fxk . Observe that we can write

Ft = ±Fx1 ± Fx2 ± · · · ± Fxk ≤ F1 + · · ·+ Ft−2 < Ft,

contradiction.

Thus there are at least dn2 e+ 1 vertices.

Second solution (mine) I will show for each k ≥ 2, if |S| = k, then S − S contains at most

2k − 3 distinct Fibonacci numbers. (If k = 1, then at most 0.) To this end, we strong induct

on k, with base cases k = 1 and k = 2 trivial.

Draw a graph G with k vertices representing the k elements of S. For each (distinct) Fibonacci

number f , draw an edge between one pair of nodes (u, v) with |u − v| = f . (If multiple (u, v)

exist, choose one.) It is equivalent to show at most 2k − 3 edges are drawn for k ≥ 2 and none

for k = 1.

Let Ft be the longest edge drawn. I contend that upon deleting the edge Ft and the edge

Ft−1 (if it exists), the graph is disconnected. Indeed, if a path exists between the two original

endpoints of the Ft edge, then the sum of the lengths of the edges in this path is at most∑
edge length ≤ F2 + F3 + · · ·+ Ft−2 < Ft,

contradiction.

Now split G into G1 t G2 with k1 and k2 vertices. Since k ≥ 3 we assume without loss of

generality k1 ≥ 2. Then G1 has at most 2k1 − 3 edges by inductive hypothesis, and G2 has at

most 2k2 − 2 edges (taking the case k2 = 1 into consideration), so the number of edges in G is

#edges in G ≤ 2 + (2k1 − 3) + (2k2 − 2) = 2k − 3.

Problem B4.3 (ISL 2020 N6)

For a positive integer n,

• let d(n) be the number of positive integer divisors of N , and

• let ϕ(n) be the number of positive integers at most n which are relatively prime to

n.

Does there exist a constant C such that

ϕ(d(n))

d(ϕ(n))
≤ C

for all n ≥ 1?

The answer is no.

Let p1, . . . , pm be the first m primes, and let q1, . . . , qr be primes with the property that

pm < qi < 2pm. By prime number theorem, we can let r grow sufficiently large.

Consider n of the form

n = p2
s1−1

1 · · · p2sm−1m q1 · · · qr,

12
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Then we have

d(n) = 2s1+···+sm+r and ϕ(d(n)) = 2s1+···+sm+r−1.

Moreover

ϕ(n) = p2
s1−1

1 · · · p2sm−1m (q1 − 1) · · · (qr − 1).

Since qi−1
2 ≤ pm, the prime factors of qi − 1 are in among {p1, . . . , pm}, so we can write

ϕ(n) = p2
s1−2+f1

1 · · · p2sm−2+fmm ,

whence

d(ϕ(n)) =
∏

(2si − 1 + fi) .

Therefore,
ϕ(d(n))

d(ϕ(n))
≥ 2r−1

∏(
2si

2si − 1 + fi

)
.

As the si grow large, this approaches 2r−1, which can be arbitrarily large.

Remark. Instead of using prime number theorem, we can prove there are unbounded primes in

[k, 2k) as follows: if there are always at most R such primes, then then the sum of the reciprocals

of the primes in [2, 4) ∪ [4, 8) ∪ [8, 16) ∪ · · · is

≤ R

2
+
R

4
+
R

8
+ · · · ≤ R,

but it also diverges.

§2.5 Solutions to MOP Quiz 5

Problem B5.1 (Brazil Undergrad 2010 Olympiad)

Let k be a positive integer for which p = 60k + 7 is prime. Suppose that p divides

102n + 8 · 10n + 1 for some positive integer n. Show that k and n are even.

If n is odd, then

0 ≡ 102n + 8 · 10n + 1

≡ (10n − 1)2 + 10n+1 (mod p)

is the sum of two squares, but p - 10n+1 and p ≡ 3 (mod 4), contradiction.

If n is even, then

0 ≡ 102n + 8 · 10n + 1

≡ (10n + 1)2 + 6 · 10n+1 (mod p),

so since p - 10n+1, −6 is a quadratic residue.

We can check −1 and 3 are not quadratic residues, so 2 is a quadratic residue, so p ≡ ±1

(mod 8). The desired conclusion follows.

Problem B5.2 (ISL 2020 G5)

Let ABCD be a cyclic quadrilateral. Points K, L, M , N are chosen on AB, BC, CD,

DA such that KLMN is a rhombus with KL ‖ AC and LM ‖ BD. Let ωA, ωB, ωC , ωD
be the incircles of 4ANK, 4BKL, 4CLM , 4DMN . Prove that the common internal

tangents to ωA and ωC and the common internal tangents to ωB and ωD are concurrent.

Let F = AB ∩ CD and G = AD ∩BC.

13
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Claim 1. K and M lie on the bisector of ∠G.

Proof. Note that AK
AB = KN

BD and BK
AB = KL

AC . Dividing, we have

AK

BK
=
AC

BD
=
GA

GB
,

and similarly for M .

Analogously F , N , L collinear.

A

B

CD
F

G

K

L

M

N

Claim 2. F is the exsimilicenter of ωA and ωB.

Proof. Since GKM is the perpendicular bisector of NL, by symmetry there is a circle ωG
tangent to GN , GL, KN , KL.

By Monge’s theorem on ωA, ωB, ωG, the exsimilicenter of ωA, ωB lies on line LN , which is

sufficient.

Analogously ωC , ωD have exsimilicenter F , and ωA, ωD and ωB, ωC have exsimilicenter G.

This is enough to solve the problem. Let IA, IB, IC , ID and rA, rB, rC , rD be the centers

and radii of ωA, ωB, ωC , ωD, so that FIA
FIB

= rA
rB

, etc. Also let X = IAIC ∩ IBID.

F

G

IA

IB

IC
ID

X

14
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To finish, observe:

• By Monge on (ωA, ωD, ωC) and (ωA, ωD, ωB), the insimilicenters of (ωA, ωC) and (ωB, ωD)

lie on the line through F and the insimilicenter of (ωA, ωD).

• By Monge on (ωA, ωB, ωC) and (ωA, ωB, ωD), the insimilicenters of (ωA, ωC) and (ωB, ωD)

lie on the line through G and the insimilicenter of (ωA, ωB).

Hence the two insimilicenters coincide.

Remark (Generalization). The problem still holds if KLMN is any parallelogram.

§2.6 Solutions to ELMO

Problem ELMO1 (Eric Shen)

Let ABC be a triangle, and let P and Q lie on sides AB and AC such that the circumcircle

of 4APQ is tangent to segment BC at a point D. Let E lie on segment BC such that

BD = EC. Line DP intersects the circumcircle of 4CDQ again at X, and line DQ

intersects the circumcircle of 4BDP again at Y . Prove that points D, E, X, Y are

concyclic.

We present two solutions.

First solution, by angle chasing Since ]BYD = ]BPD = ]APD = ]AQD, we have

BY ‖ AC and analogously CX ‖ AB. Construct A′ = BY ∩CX, so ABA′C is a parallelogram.

A

B C

A′

D
E

P
Q

X

Y

Note that ]XDY = ]PQD = ]PAQ = ]XA′Y , so D, X, Y , A′ are concyclic. Now observe

that ]A′ED = ]ADE = ]APD = ]BPD = ]BYD = ]A′Y D, so E lies on (DXA′Y ) as

well.

Second solution, by circumcenters (Pitchayut Saengrungkongka) Let O, OB, OC , S be the

centers of (APQ), (BDP ), (CDQ), (DXY ), respectively. Clearly, OOBSOC is parallelogram.
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The rest is just projection chasing: let proj(U) denote the projection of U onto BC. We have

proj(S) = proj(OB) + proj(OC)− proj(O)

=
B +D

2
+
C +D

2
−D

=
B + C

2
,

so S lies on the perpendicular bisector of BC, which coincides with the perpendicular bisector

of DE.

Problem ELMO2 (Maxim Li)

Let n ≥ 2 be an integer and let a1, a2, . . ., an be integers such that n | ai− i for all integers

1 ≤ i ≤ n. Prove there exists an infinite sequence b1, b2, . . . with bi ∈ {a1, a2, . . . , an} for

each i, such that
∞∑
i=1

bi
ni
∈ Z.

Evidently we may select integers z0, z1, z2, . . . all in {a1, a2, . . . , an} so that

z0 + z1n+ · · ·+ zk−1nk−1 ≡ 0 (mod nk)

for each k. Thus each of the numbers

z0
n
,

z1
n

+
z0
n2
,

z2
n

+
z1
n2

+
z0
n3
, . . .

are integers.

Now since these integers are bounded, we may find k and ` with

zk−1
n

+ · · ·+ z0
nk

=
zk+`−1
n

+ · · ·+ z0
nk+`

=: A.

This implies that
zk+`−1
n

+ · · ·+ zk
n`

=

(
1− 1

n`

)
A.

Finally, let (b1, b2, . . .) = (zk+`−1, . . . , z0, zk+`−1, . . . , z0, . . .), so that

b1
n

+
b2
n2

+ · · · =
zk+`−1

n + · · ·+ zk
n`

1− 1
n`

=
zk−1

n
+ · · ·+ z0

n`
= A,

which is an integer.

Problem ELMO3 (Maxim Li)

Each cell of a 100×100 grid is colored with one of 101 colors. A cell is diverse if, among the

199 cells in its row and column, every color appears at least once. Determine the maxmum

possible number of diverse cells.

The answer is 1002 − 4, achieved by generalizing the following construction:
1 2 3 4 5

3 1 2 4 5

2 3 1 4 5

4 4 4 5 6

6 6 6 6 5

 .
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Now we prove that this is maximal. If some color appears at most 98 times, then we may

find two rows and two columns without this color, so we may find four non-diverse squares.

Henceforth all colors appear at least 99 times, so we may assume without loss of generality

the colors, 1, 2, . . . , 100, 101 each appear 99, 99, . . . , 99, 100 times.

For each k = 1, . . . , 100, select a color ck that does not appear in row k, and let xk be the

number of columns containing ck. If xk 6= 100 for all k, there is a non-diverse square in every

row, so at least 100 non-diverse squares.

Otherwise xk = 100 for some k, implying ck = 101. Thus the color 101 does not appear in

every row, so repeating the argument with columns instead of rows gives the required bound.

Problem ELMO4 (Brandon Wang)

Suppose the set of positive integers is partitioned into n ≥ 2 disjoint arithmetic progressions

S1, S2, . . ., Sn with common differences d1, d2, . . ., dn. Prove that there exists exactly one

index 1 ≤ i ≤ n such that ∏
j 6=i

dj ∈ Si.

Evidently every sequence is a complete residue class. Exactly one sequence contains∑
i

∏
j 6=i

dj ,

and that is the sequence that works.

Problem ELMO5 (Sean Li)

Let n and k be positive integers. Two infinite sequences (si) and (ti) are equivalent if

si = sj if and only if ti = tj for all positive integers i and j, and a sequence (ti) has

equi-period k if t1, t2, . . . and tk+1, tk+2, . . . are equivalent. In terms of n and k, how

many sequences of equi-period k are there in the set of sequences with each entry in the

set {1, 2, . . . , n}, up to equivalence?

The answer is nk.

We’ll construct a bijection between (a1, . . . , ak) ∈ [n]k and equivalence classes of sequences

(si) of equi-period k.

First direction: Suppose we are given (a1, . . . , ak) ∈ [n]k. Define a counter C = 0. For each

i = 1, 2, . . . , k:

• If ai ≤ n− C, then let si = C + 1, sk+i = C + 2, s2k+i = C + 3, . . ., s(a−1)k+i = C + a1,

and increment C by ai.

• Otherwise let si = n+1−ai ≤ C, which will determine sk+i, s2k+i, . . . through previously-

known cycles using numbers ≤ C.

Second direction: Suppose we are given (si). Keep a running counter C = 0, that we will

use to number off the distinct values of observe. For each i = 1, 2, . . . , k:

• If all of si, sk+i, s2k+i, . . . are greater than C (i.e. we’ve never seen them before), then let

ai be the period of this sequence. Without loss of generality (up to equivalence) we may

let si = C + 1, sk+i = C + 2, . . ., s(ai−1)k+i = C + ai, and increment C by ai.
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• If any of si, sk+i, s2k+i, . . . is ≤ C, then all of them are determined by a previously-known

cycle and each term ≤ C, so we may let ai = n+ 1− si.

It is easy to see that the above two operations are inverses of each other, so we have established

the desired bijection.

Problem ELMO6 (Maxim Li)

In triangle ABC, points D, E, F lie on segments BC, CA, AB, respectively, such that

each of the quadrilaterals AFDE, BDEF , CEFD has an incircle. Prove that the inradius

of 4ABC is twice the inradius of 4DEF .

Consider the anticomplementary triangle D′E′F ′ of 4DEF . We will show that the incircles

of 4ABC and 4D′E′F ′ coincide.

D′

E′ F ′D

EF

I

A

B

C

First note that AF −AE = DF −DE = D′E −D′F , so there is a circle ωA tangent to rays

AE, AF , D′E, D′F . Define ωB and ωC analogously.

Assume for contradiction the circles ωA, ωB, ωC do not coincide. One can check that the

pairwise exsimilicenters of ωA, ωB, ωC are BC ∩ E′F ′ = D, CA ∩ F ′D′ = E, AB ∩D′E′ = F .

By Monge’s theorem, points D, E, F are collinear, contradiction.

§2.7 Solutions to Mock IMO

Problem MIMO1 (ISL 2020 C2)

In a regular 100-gon, 41 vertices are colored black and the other 59 vertices are colored

white. A quadrilateral is weird if it has three vertices of one color and one vertex of the

other color.

Prove that there exist 24 pairwise disjoint weird quadrilaterals. (Two quadrilaterals are

disjoint if they have no common vertices and their interiors do not intersect.)

We prove the following claim:

Claim. For n ≥ 4, if #W > #B > 0 then we can find four consecutive vertices in the form

WWWB or WWBW .
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Proof. Let the vertices have color a1, . . . , an (indices modulo n) and suppose no substrings

WWWB or WWBW occur.

Then there are no three consecutive W , since otherwise the next occurrence of B causes a

WWWB substring to occur. Moreover substrings WW must be immediately followed by BB,

since otherwise WWBW occurs.

It is easy to see, then, that #W ≤ #B, contradiction.

Now take an arbitrary white vertex and delete it, so the initial value of (#B,#W ) is (41, 58).

Repeatedly apply the claim, removing a weird quadrilateral with three white vertices whenever

#W > #B and a weird quadrilateral with three black vertices whenever #B > #W .

Observe #W and #B always have opposite parity, so they are never equal. Moreover the

ordered pair (#B,#W ) will eventually reach (32, 31), and from here |#B −#W | = 1 always,

so neither #W nor #B will reach 0 until there are at most three vertices remaining.

Thus we have found 24 disjoint weird quadrilaterals, as desired.

Problem MIMO2 (ISL 2020 A3)

Let a, b, c, d be positive real numbers satisfying (a+ c)(b+ d) = ac+ bd. Find the smallest

possible value of
a

b
+
b

c
+
c

d
+
d

a
.

By AM-GM, (a
b

+
c

d

)
+

(
b

c
+
d

a

)
≥ 2

√
ac

bd
+ 2

√
bd

ac

= 2 · ac+ bd√
ac · bd

= 2 · (a+ c)(b+ d)√
ac · bd

≥ 2 · 2
√
ac · 2

√
bd√

ac · bd
= 8,

with equality attained by (a, b, c, d) = (2 +
√

3, 1, 2 +
√

3, 1).

Problem MIMO3 (ISL 2020 N7)

Let S be a set of n ≥ 3 positive integers, none of which is the sum of two different numbers

in S. Prove that there exists a permutation of S in which none of the middle n−2 integers

divides the sum of its neighbors.

We present two solutions.

First solution, by explicit construction We’ll construct a permutation that strictly increases,

then strictly decreases.

Let S = {x1 < x2 < · · · < xn}. Then:

Claim 1. xi - xj + xk if i > j, k

Proof. Note xj + xk < 2xi.
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Claim 2. For i, j, there is at most one index k < i with xi | xj + xk.

Proof. If xi | xj + xk1 and xi | xj + xk2 , then xi | xk1 − xk2 . But xi > |xk1 − xk2 |.

Now place xn in our permutation, and say the initial direction is left. As we iterate i =

n− 1, n− 2, . . . , 1:

• If, without loss of generality, the direction is left, then try placing xi to the left of the

permutation.

• If this doesn’t work, there is an “available spot” on the right of the permutation (by Claim

2), so place xi there and set the direction to right.

This yields a valid permutation.

Second solution, by induction (mine) In what follows, the notation x | y± z means x | y+ z

or x | y − z, and x - y ± z means x - y + z and x - y − z.
We prove the following via induction on n:

Let S be a set of n positive integers, none of which is the sum of two different

numbers in S. There is a permutation of S such that each of the middle n − 2

integers divides neither the sum nor difference of its neighbors.

Our base case is n = 2, for which there is nothing to show.

Now assume the permutation

a1, a2, a3, . . . , an

obeys the required conditions. For A > max{a1, . . . , an} with A 6= ai + aj for all i, j, we will

show we can insert A somewhere in a1, . . ., an.

First note that for all i, j we have A - ai + aj . This is because |ai− aj | < A and ai + aj < 2A

always.

Now assume for contradiction A cannot be inserted anywhere. Then the following assertions

all hold:

• a2 | a3 ±A (else a1, A, a2, a3, . . . works);

• a2 | a1 ±A or a3 | a4 ±A (else a1, a2, A, a3, . . .);

• a3 | a2 ±A or a4 | a5 ±A (else a1, a2, a3, A, . . .);

• . . .

• an−2 | an−3 ±A or an−1 | an ±A (else . . ., an−2, A, an−1, an);

• an−1 | an−2 ±A (else . . ., an−2, an−1, A, an);

However, note for all i that ai | ai−1 ±A and ai | ai+1 ±A cannot simultaneously hold, since

otherwise ai | ai−1 ± ai+1, contradiction. It follows that

a2 | a3 ±A =⇒ a2 - a1 ±A =⇒ a3 | a4 ±A
=⇒ a3 - a2 ±A =⇒ a4 | a5 ±A
=⇒ a4 - a3 ±A =⇒ a5 | a6 ±A
=⇒ · · ·
=⇒ an−2 - an−3 ±A =⇒ an−1 | an ±A
=⇒ an−1 - an−2 ±A,

contradiction.
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Problem MIMO4 (ISL 2020 G3)

Let ABCD be a convex quadrilateral with min{∠B,∠D} > 90◦ and ∠A = ∠C. Points E

and F are the reflections of A in BC and CD. Segments AE and AF meet line BD at K

and L.

Prove that the circumcircles of 4BEK and 4DFL are tangent to each other.

Let T be the reflection of A over BD, so that T lies on (BCD). Also note BA = BE = BC

and DA = DF = DT .

Claim. T lies on (BEK).

Proof. Note that KB bisects ∠AKT and BE = BT .

Analogously T lies on (DFL).

A

B

C

D

T

E

F

K
L

Let `1 and `2 be the tangents to (BEKT ) and (DFLT ) at T . Then note that

](`1, BT ) = ]TKB = ]BKA = 90◦ + ]DBC

and similarly ](DT, `2) = 90◦ + ]CDB, so

](`1, `2) = ](`1, BT ) + ]BTD + ](DT, `2)

= (90◦ + ]DBC) + ]BCD + (90◦ + ]CDB) = 0◦,

as needed.

Problem MIMO5 (ISL 2020 N5)

Determine all functions f : {1, 2, . . .} → {0, 1, 2, . . .} such that

• f(xy) = f(x) + f(y) for all positive integers x and y, and

• there exists an infinite set S of positive integers such that f(a) = f(b) whenever

a+ b ∈ S.

We present two solutions.

First solution The answer is f(x) ≡ kvp(x) for k ≥ 0 and p prime, for which S = {1, p, p2, p3 . . .}
works.

Let p be minimal so that f(p) 6= 0. (Clearly p is prime, since if p = ab then f(a) = f(b) = 0.)
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Claim. S can only consist of numbers of the form kp`, where ` ≥ 0 and k < p.

Proof. We know f(1), f(2), . . . , f(p − 1) = 0 and f(pn) > 0 for all n ≥ 1, so if 0 < k < p and

n > 0, then np+ k /∈ S; that is, elements of S are of the form

• k, with 0 < k < p, or

• multiples of p.

However one can easily check that ab ∈ S implies a ∈ S and b ∈ S. Indeed, if x+ y = a then

xb+ yb = ab, so f(xb) = f(yb), implying f(x) = f(y). The claim follows.

If S is infinite, then p` ∈ S for all `.

Assume that f(q) > 0 for some prime q 6= p. Then pq−1 ≡ 1 (mod q), so f(pq−1 − 1) > 0 =

f(1), implying pq−1 /∈ S, contradiction.

Second solution by magic (shortlist packet) We can directly show:

Claim. If p is any prime with f(p) > 0, then S can only consist of numbers of the form

kp` with k < p.

Proof. If s ∈ S, then for any r ≤ s− 1,

f

((
s− 1

r

))
=

r∑
i=1

[f(s− i)− f(i)] = 0.

Thus
(
s−1
r

)
is not divisible by p for any r ≤ s − 1, so the conclusion follows from Lucas’s

theorem.

At last if f(p), f(q) > 0 then we can apply the claim to p and q, showing that S must be

finite.

Problem MIMO6 (ISL 2020 C8)

Anastasia and Bananastasia play a game on a board as follows. Initially, the board contains

2020 copies of the number 1. Each round proceeds as follows:

1. Anastasia erases two numbers x and y from the board.

2. Bananastasia writes one of x+ y and |x− y| on the board.

After each round, the game ends if one of the following holds:

• one number on the board is larger than the sum of all other numbers on the board,

or

• all numbers on the board are zeroes.

After the game ends, Bananastasia must give Anastasia one slice of banana bread for

every number remaining on the board. How many slices of banana bread can Anastasia

guarantee, assuming optimal play from both players?

The answer is 7; for general n, the answer is s2(n), the sum of the digits of n in binary.

Anastasia’s strategy: We will show Ana can guarantee s2(n) numbers remain for all n. To

this end, we induct on n, letting f(n) denote the answer for n.
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Pair up the 1’s (potentially leaving a 1), and ask Banana to combine them. In the end, there

are m twos, bn/2c −m zeros, and n mod 2 ones.

Then Ana focuses on the m twos, repeating her strategy. It can be seen that when the game

on the m twos terminates, the original game is also over. Hence the number of terms remaining

is

f(n) ≥ (n mod 2) + min
m

(f(m) + bn/2c −m)

≥ (n mod 2) + min
m

(s2(m) + bn/2c −m)

= (n mod 2) + s2(bn/2c) = s2(n).

Bananastasia’s strategy: Let n be even. In essence, a strategy for Ana is a binary tree of

possibilities for Banana, given the current configuration of the board.

For each node corresponding to position a1, . . . , an, consider the multiset

S = {±a1 ± a2 ± · · · ± an}

of size 2n.

Claim (Black magic). For each node of the binary tree with corresponding multiset S, if

its children have multisets S1 and S2 then S = S1 t S2.

Proof. If Ana’s strategy chooses a and b, then the four values of ±a ± b match the two values

of ±(a+ b) and the two values of ±(a− b).

For such a binary tree, by taking the disjoint union of the multisets of all the leaves, you get

the original multiset.

There are
(
n
n/2

)
zeroes in the root’s multiset. If we consider the leaves that correspond to

terminated configurations,

• the multisets of those in which one number is larger than the sum of the rest have no

zeroes, and

• the multisets (with size m) of those in which all numbers are zeroes have 2m zeroes.

It follows that (
n

n/2

)
=
∑

2m,

implying minm ≤ ν2(
(
n
n/2

)
) = s2(n).

Remark (Explicit strategy). We may explicitly state Banana’s strategy as follows. If F is the

number of zeroes in S for some given configuration, then Banana’s strategy is to ensure that

ν2(F ) ≤ s2(n) always. This is always possible, since

• the initial value of F , i.e.
(

n
n/2

)
, has this property, and

• if the two possible values of F after Banana’s move are F1 and F2, the claim implies F =

F1 + F2.

Remark (n odd). The shortlist packet shows it is possible to modify the above remark to solve

the problem for n odd.
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We instead keep track of the sets

S1 = {+a1 ± a2 ± a3 ± · · · ± an}
S2 = {±a1 + a2 ± a3 ± · · · ± an}
S3 = {±a1 ± a2 + a3 ± · · · ± an}

...

Sn = {±a1 ± a2 ± a3 ± · · ·+ an}.

Let Fi be the number of positive terms in Si, and let F = min{Fi}. The initial value of F is

2n−1 +
1

2

(
n− 1

(n− 1)/2

)
,

with ν2(F ) = s2(n)− 2.

If F splits into F1 and F2 then it can be seen that min{ν2(F1), ν2(F2)} ≤ ν2(F ), so Banana can

guarantee ν2(F ) ≤ s2(n)− 2 always.

The multisets (with size m) of the terminated leaves, i.e. those in which one number is larger

than the rest, will have F = 2m−2, and the desired conclusion follows.

§2.8 Solutions to MOP Quiz 6

Problem B6.1 (ISL 2020 G1)

Let ABC be an isosceles triangle with CA = CB, and let D be a point on side AB with

AD < DB. Let P and Q be the projections from D to CB and CA. The perpendicular

bisector of PQ meets segment CQ at E, and the circumcircles of 4ABC and 4CPQ meet

at F 6= C.

Show that if P , E, F are collinear, then ∠C = 90◦.

Let M be the midpoint of AB, so CPMDQF is cyclic. Since PCFQ is an isosceles trapezoid

and MP = MQ (from ∠QCM = ]MCP ), we have MC = MF . Drawing the circle centered

at M through C, it is clear MC = MF is only possible if M is the center of (ABC).

C

A B
MD

P

Q

F

E

Problem B6.2 (ISL 2020 A1)

Let n be a positive integer. Determine the smallest real number C such that, for all real x,

n

√
x2n + 1

2
≤ C(x− 1)2 + x.
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The answer is C ≥ n/2.

If f(x) =
(
x2n+1

2

)1/n
and g(x) = C(x− 1)2 + x, we may compute that

f ′(x) = x2n−1
(
x2n + 1

2

)1/n−1

f ′′(x) =
1

2
x2n−2

(
x2n + 2n− 1

)(x2n + 1

2

)1/n−2

f ′′′(x) =
−(n− 1)(2n− 1)

2
· x2n−3

(
x2n − 1

)(x2 + 1

2

)1/n−3
.

Moreover

g′(x) = 2C · x− (2C − 1) and g′′(x) = 2C.

Proof c = n/2 works: Analysis of f ′′′ shows that the local maxima of f ′′ are at 1 and −1.

Therefore we have

f ′′(x) ≤ g′′(x) ∀x.

Since f ′(1) = g′(1) = 1, we have

f ′(x) ≥ g′(x) ∀x ≤ 1,

f ′(x) ≤ g′(x) ∀x ≥ 1.

Finally since f(1) = g(1) = 1, we have

f(x) ≤ g(x) ∀x.

Proof c < n/2 fails: We have that f ′′(1) = n > 2c = g′′(1), so by continuity for some ε > 0

we have

f ′′(x) > g′′(x) ∀x ∈ (1− ε, 1 + ε).

Since f ′(1) = g′(1) = 1, we have

f ′(x) < g′(x) ∀x ∈ (1− ε, 1)

f ′(x) > g′(x) ∀x ∈ (1, 1 + ε).

Finally since f(1) = g(1) = 1, we have

f(x) > g(x) ∀x ∈ (1− ε, 1 + ε) \ {1},

contradiction.

Remark. You can be almost sure of the answer by computing the Taylor approximation

n

√
x2n + 1

2
≈ 1 + (x− 1) + n · (x− 1)2

2
.
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Remark (Alternate solution sketch, Ankan Bhattacharya). Let x = 1+ε
1−ε for ε ∈ R. Then we want

to show

(1 + ε)2n + (1− ε)2n ≤
(n

2
(2ε)2 + (1− ε)(1 + ε)

)n
⇐⇒ (1− ε)2n + (1 + ε)2n ≤

(
1 +Dε2

)n
,

where it turns out D = 2n − 1, by checking that every coefficient on the left is smaller than the

corresponding coefficient on the right.

Remark. Mildorf once proved the following in his quintessential handout about inequalities:

Let k ≥ −1 be an integer. Then for all positive reals a and b,

(1 + k)(a− b)2 + 8ab

4(a+ b)
≥ k

√
ak + bk

2

with equality if and only if a = b or k = ±1, where the power mean k = 0 is interpreted

to be the geometric mean
√
ab. Moreover, if k < −1, then the inequality holds in the

reverse direction, with equality if and only if a = b.

§2.9 Solutions to MOP Test 7

Problem B7.1 (ISL 2020 G4)

Let n ≥ 6 be an integer and D1, . . . , Dn be pairwise disjoint closed disks in the plane with

radii R1 ≥ · · · ≥ Rn. For each i ∈ {1, . . . , n}, let Pi be a point on Di. Let O be a point in

the plane. Prove that

OP1 +OP2 + · · ·+OPn ≥ R6 +R7 + · · ·+Rn.

I contend OPi ≥ R6 for some i ≤ 6. This suffices by induction.

Drop the condition R1 ≥ R2 ≥ · · · ≥ R6, and instead number the disks D1, . . . , D6 counter-

clockwise with respect to O. Let the center of Di be Oi.

Since ∠O1OO2 + · · ·+∠O6OO1 = 360◦, for some index i we have ∠OiOOi+1 ≤ 60◦. Without

loss of generality OOi ≥ OOi+1. Evidently ∠OiOOi+1 is not the largest angle in 4OiOOi+1,

i.e. OiOi+1 is not the longest side, so

OOi ≥ OiOi+1 ≥ Ri +Ri+1.

This allows us to conclude

OPi ≥ OOi −Ri ≥ Ri+1 ≥ min{R1, . . . , R6}.

Problem B7.2 (ISL 2020 C5)

Let p be an odd prime, let N = 1
4(p3 − p)− 1, and let S be a subset of {1, . . . , N}. Show

that there exists an integer a ∈ {1, . . . , p− 1} such that for all positive integers n ∈ N ,

|S ∩ {1, . . . , n}|
n

6= a

p
.

Let Sn = |S ∩ {1, . . . , n}|.
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Assume for contradiction there exist n1 < n2 < · · · < np−1 and a permutation a1, . . . , ap−1

of {1, . . . , p− 1} such that Spni = aini. The goal is to show np−1 ≥ p2−1
4 .

Drop the p prime condition. Analyzing the difference between Si and Si+1, we must have

0 ≤ ni+1ai+1 − niai ≤ ni+1p− nip.

In other words,

ni+1 ≥ ni ·max

{
ai
ai+1

,
p− ai
p− ai+1

}
.

The above condition suffices to prove the problem.

The idea is that we will go “up” to p − 1 and then go “down.” Let k be the largest integer

such that 1, . . . , k all appear before av = p− 1.

Case 1: k ≤ p−1
2 . Let au = ` be the last of 1, . . . , k that appear, and let aw = k+ 1. (Hence

we have 1 ≤ u < v < w ≤ p− 1.)

But (ni) is strictly increasing, so L ≥ 1, nu ≥ u ≥ k.

np−1 ≥ nw ≥ max

{
av
aw
,
p− av
p− aw

}
cv

≥ max

{
av
aw
,
p− av
p− aw

}
max

{
au
av
,
p− au
p− av

}
nu

≥ p− 1

k + 1
· (p− `) · k ≥ p− 1

k + 1
· (p− k) · k ≥ p2 − 1

4

Case 2: k > p−1
2 . In this case, jumping up suffices. Let au = ` be the last of 1, . . . , p−1

2 to

appear. Then

np−1 ≥ nv ≥ max

{
au
av
,
p− au
p− av

}
nu

= (p− `) · nu ≥
p+ 1

2
· p− 1

2
=
p2 − 1

4
.

Problem B7.3 (ISL 2020 G8)

Let ABC be a triangle with incenter I and circumcircle Γ. Circles ωB passing through B

and ωC passing through C are tangent at I. Let ωB meet minor arc AB of Γ at P and AB

at M 6= B, and let ωC meet minor arc AC of Γ at Q and AC at N 6= C, Rays PM and

QN meet at X. Let Y be a point such that Y B is tangent to ωB and Y C is tangent to ωC .

Show that A, X, Y are collinear.

Let PM and QN intersect Γ again at P ′ and Q′.

Claim 1. BCNM is tangential, and Y ∈ Γ.

Proof. If ` is the common tangent to ωB and ωC at I, then

]MIN = ](MI, `) + ](`,NI)

= ]MBI + ]ICN = ]IBC + ]BCI = ]BIC,

implying that BCNM is tangential. Moreover

]Y BM = ]BIM = ]CIN = ]Y CN,

so Y lies on Γ.
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A

B C

M

N

I

T

P

Q

P ′

Q′ X

Y

D

Claim 2. Y A is tangent to (AMP ) and (ANQ).

Proof. Note that

]APM = ]APB + ]BPM = ]AY B + ]Y BM = ]Y AM,

and analogously ]AQN = ]Y AN .

Claim 3. M , N , P , Q are concyclic.

Proof. If PM and QN intersect Γ again at P ′ and Q′, then By Reim’s theorem it will suffice

to show MN ‖ P ′Q′.
If the incircle touches BC and MN at D and T , then

](P ′Q′, BC) = ]Q′P ′C + ]P ′CB = ]NQC + ]MPB

= ]NIC + ]MIB = 2]MIB = ]TID = ](MN,BC),

as required.

By radical axis theorem on (AMP ), (ANQ), (MNPQ), the desired conclusion follows, with

points A, P , Q on the common tangent of (AMP ) and (ANQ).

Remark (Alternate solution sketch). After finding Y ∈ Γ, we may invert at I. It turns out

MNPQ becomes an isosceles trapezoid, and it is not hard to finish from here, either in the inverted

or original diagram.
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