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8§81 Problems

§1.1 MOP Quiz 1

Problem B1.1 (Bulgaria TST 2004/3/2). Let n > 4 be a positive integer. The (22”
a complete graph with 2n vertices are to be colored blue and red, in such a way that

e 1o triangle has all three edges blue; and

e no complete subgraph on n vertices has all its edges red.

In such a coloring, determine the minimum possible number of blue edges.

) edges of

Problem B1.2 (Brazil 2012). Find the least nonnegative integer b such that there exists a

nonnegative integer n for which the last 2021 decimal digits of ™ are all 1.
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8§1.2 MOP Test 2

Problem B2.1. Does there exist a positive integer m for which the equation
(a® — a)(b® — b) = mc?
has infinitely many positive integer solutions (a, b, ¢) in which a # b?
Problem B2.2 (ISL 2020 A5). A magician wishes to perform the following trick.

The magician announces a positive integer n, along with 2n real numbers z; <
-+ < T9, to the audience. Then an audience member secretly chooses a polynomial
P(z) of degree n with real coefficients and gives the magician the values P(x1), ...,
P(z9y,) in any order. After that, the magician announces the polynomial P(z).

Can the magician perform this trick?

Problem B2.3 (ISL 2020 G7). Let P be a point on the circumcircle of acute triangle ABC.

Let D, E, and F be the reflections of P in the A-midline, B-midline, and C-midline. Let w be

the circumcircle of the triangle formed by the perpendicular bisectors of AD, BE, and CF.
Show that the circumcircles of ANADP, ABEP, ACFP, and w share a common point.

§1.3 MOP Test 3

Problem B3.1 (ISL 2020 N4). For any odd prime p and integer n, let d,(n) denote the
remainder when n is divided by p. The sequence (zg, 21, .. .) is a p-dop if ¢ is a positive integer
coprime to p, and @p41 = @ + dp(xy,) for all n > 0. Do there exist infinitely many primes p
such that there exist p-dops (ag, a1, ...) and (bg, b1, ...) for which...

(a) ... ap < by, infinitely often and a,, > b, infinitely often?
(b) ... ap < by, but a,, > b, for all n. > 1.
Problem B3.2 (ISL 2020 G6). Let ABC be a triangle with AB < AC, incenter I, and A-

excenter 14. The incircle meets BC at D. Define E = AD N Bl and F = AD N CI,. Show
that the circumcircles of AAID and AI4EF are tangent to each other.

Problem B3.3 (ISL 2020 A2’). Let A denote the set of polynomials in 100 variables z1, ...,
100 with integer coefficients.

(a) Prove that any monomial z{'z5? - - - 2{} with e; +ea+-- - +e100 > 4951 can be expressed
in the form
DP1q1 + p2g2 + - - - + P1ooq100

where p;, g; € A for all i, and ¢; is a symmetric polynomial satisfying ¢;(0,...,0) for all i.

(b) Prove that xiz?--- 23, cannot be expressed in this way.

§1.4 MOP Test 4

Problem B4.1. Can you find 15 positive integers (not necessarily distinct) with product k,
such that if each of the integers is increased by 1, the new product is 2021k7

Problem B4.2 (ISL 2020 C4). The Fibonacci numbers Fy, Fi, ... are defined by Fy = 0,
Fy =1, and F42 = Fypq1 + Fpy, for all m > 0.

Let n > 2 be a fixed integer and suppose that S is a set of integers such that each element of
{F3,F3,...,F,} can be written as the difference of two elements in S. How small can |S| be?
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Problem B4.3 (ISL 2020 N6). For a positive integer n,

e let d(n) be the number of positive integer divisors of N, and

e let p(n) be the number of positive integers at most n which are relatively prime to n.

Does there exist a constant C' such that

for all n > 17

§1.5 MOP Quiz 5

Problem B5.1 (Brazil Undergrad 2010 Olympiad). Let k£ be a positive integer for which
p = 60k + 7 is prime. Suppose that p divides 10?" +8-10™ + 1 for some positive integer n. Show
that £ and n are even.

Problem B5.2 (ISL 2020 G5). Let ABCD be a cyclic quadrilateral. Points K, L, M, N are
chosen on AB, BC, CD, DA such that KLMN is a rhombus with KL || AC and LM | BD.
Let wa, wp, we, wp be the incircles of AANK, ABKL, ACLM, ADMN. Prove that the
common internal tangents to w4 and w¢ and the common internal tangents to wp and wp are
concurrent.

§1.6 ELMO

Problem ELMOL1 (Eric Shen). Let ABC be a triangle, and let P and @ lie on sides AB and
AC such that the circumcircle of AAPQ is tangent to segment BC' at a point D. Let E lie on
segment BC' such that BD = EC. Line DP intersects the circumcircle of ACDQ again at X,
and line D@ intersects the circumcircle of ABDP again at Y. Prove that points D, E, X, Y
are concyclic.

Problem ELMO2 (Maxim Li). Let n > 2 be an integer and let aj, ag, ..., a, be integers such
that n | a; — i for all integers 1 < i < n. Prove there exists an infinite sequence by, be, ... with
b; € {a1,as,...,a,} for each i, such that

o0

b.
Y — el

nl

i=1

Problem ELMO3 (Maxim Li). Each cell of a 100 x 100 grid is colored with one of 101 colors.
A cell is diverse if, among the 199 cells in its row and column, every color appears at least once.
Determine the maxmum possible number of diverse cells.

Problem ELMO4 (Brandon Wang). Suppose the set of positive integers is partitioned into
n > 2 disjoint arithmetic progressions S, S9, ..., S, with common differences di, do, ..., dy,.
Prove that there exists exactly one index 1 < ¢ < n such that

H dj € S;.

J#i
Problem ELMOS5 (Sean Li). Let n and k& be positive integers. Two infinite sequences (s;)
and (t;) are equivalent if s; = s; if and only if ¢; = t; for all positive integers 7 and j, and a
sequence (t;) has equi-period k if t1, to, ... and tx11, tkio, ... are equivalent. In terms of n and
k, how many sequences of equi-period k are there in the set of sequences with each entry in the
set {1,2,...,n}, up to equivalence?
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Problem ELMOG6 (Maxim Li). In triangle ABC, points D, E, F' lie on segments BC, C'A,
AB, respectively, such that each of the quadrilaterals AFFDE, BDEF, CEFD has an incircle.
Prove that the inradius of AABC' is twice the inradius of ADFEF'.

§1.7 Mock IMO

Problem MIMO1 (ISL 2020 C2). In a regular 100-gon, 41 vertices are colored black and the
other 59 vertices are colored white. A quadrilateral is weird if it has three vertices of one color
and one vertex of the other color.

Prove that there exist 24 pairwise disjoint weird quadrilaterals. (Two quadrilaterals are
disjoint if they have no common vertices and their interiors do not intersect.)

Problem MIMOZ2 (ISL 2020 A3). Let a, b, ¢, d be positive real numbers satisfying (a+¢)(b+
d) = ac + bd. Find the smallest possible value of

a b c d
b ¢ d a

Problem MIMO3 (ISL 2020 N7). Let S be a set of n > 3 positive integers, none of which
is the sum of two different numbers in S. Prove that there exists a permutation of S in which
none of the middle n — 2 integers divides the sum of its neighbors.

Problem MIMOA4 (ISL 2020 G3). Let ABCD be a convex quadrilateral with min{/B, ZD} >
90° and ZA = ZC. Points E and F are the reflections of A in BC and CD. Segments AE and
AF meet line BD at K and L.

Prove that the circumcircles of ABEK and ADF'L are tangent to each other.

Problem MIMOS5 (ISL 2020 N5). Determine all functions f : {1,2,...} — {0,1,2,...} such
that

o f(zy) = f(x) + f(y) for all positive integers x and y, and

e there exists an infinite set S of positive integers such that f(a) = f(b) whenever a+b € S.
Problem MIMOG6 (ISL 2020 C8). Anastasia and Bananastasia play a game on a board as
follows. Initially, the board contains 2020 copies of the number 1. Each round proceeds as
follows:

1. Anastasia erases two numbers x and y from the board.

2. Bananastasia writes one of x + y and |x — y| on the board.
After each round, the game ends if one of the following holds:

e one number on the board is larger than the sum of all other numbers on the board, or
e all numbers on the board are zeroes.
After the game ends, Bananastasia must give Anastasia one slice of banana bread for every

number remaining on the board. How many slices of banana bread can Anastasia guarantee,
assuming optimal play from both players?
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§1.8 MOP Quiz 6

Problem B6.1 (ISL 2020 G1). Let ABC be an isosceles triangle with CA = C'B, and let D be
a point on side AB with AD < DB. Let P and @ be the projections from D to CB and CA.
The perpendicular bisector of PQ meets segment C'Q at E, and the circumcircles of AABC
and ACPQ meet at F' # C.

Show that if P, FE, F' are collinear, then ZC = 90°.

Problem B6.2 (ISL 2020 A1l). Let n be a positive integer. Determine the smallest real number
C such that, for all real z,
2n 1
\/ ° 2+ <C(z—1)>2+u
§1.9 MOP Test 7

Problem B7.1 (ISL 2020 G4). Let n > 6 be an integer and Dy, ..., D, be pairwise disjoint
closed disks in the plane with radii Ry > --- > R,. For each i € {1,...,n}, let P, be a point on
D;. Let O be a point in the plane. Prove that

OPL+0OPy+---+OP, > R + Rr + - + Ry.

Problem B7.2 (ISL 2020 C5). Let p be an odd prime, let N = i(p?’ —p) — 1, and let S be
a subset of {1,..., N}. Show that there exists an integer a € {1,...,p — 1} such that for all

positive integers n € NV,
ISN{1,...,n}|

n

# 2
p

Problem B7.3 (ISL 2020 G8). Let ABC be a triangle with incenter I and circumcircle T
Circles wp passing through B and we passing through C are tangent at I. Let wp meet minor
arc AB of ' at P and AB at M # B, and let wc meet minor arc AC of I' at Q and AC at
N # C, Rays PM and QN meet at X. Let Y be a point such that Y B is tangent to wp and
Y C is tangent to wc.

Show that A, X, Y are collinear.
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8§82 Solutions
§2.1 Solutions to MOP Quiz 1

Problem B1.1 (Bulgaria TST 2004/3/2)

Let n > 4 be a positive integer. The (22") edges of a complete graph with 2n vertices are
to be colored blue and red, in such a way that

e no triangle has all three edges blue; and

e no complete subgraph on n vertices has all its edges red.

In such a coloring, determine the minimum possible number of blue edges.

The answer is 10 for n = 4 and n + 5 for n > 5. In what follows, we only draw blue edges
and omit the red edges. The condition is that there are no triangles, and no independent set of
size n.

Construction: For n = 4, consider

For n > 5, consider

O CINEN I

—~—
n—>5

Bound: One may show via exhaustion that:
e In a triangle-free connected graph on 6 vertices there is an independent set of size 3.

e In a triangle-free connected graph on 8 vertices and < 9 edges, there is an independent
set of size 4. (This is very annoying.)

e In a triangle-free connected graph on k € {3,5,7} vertices, we can find an independent
set of size |k/2].

These already solve n = 4, so we focus on n > 5.

Say a graph with k vertices is spacious if there is an independent set of size > k/2. Let the
graph contain A spacious connected components and B non-spacious connected components.
Do not count singletons. (Observe that non-spacious components must contain an odd cycle,
so they have size > 5.)

One can easily establish the bounds 24 + 5B < 2n and #edges > 2n— A, soif A <n—>5 we
are already done. Henceforth assume A > n — 4, implying B = 1. (Of course, if B = 0 we are
trivially done by choosing independent subsets from each connected component.)

Consider this single non-spacious component. Since A > n — 4, this component contains at
most 8 vertices.

e If it contains an odd number of vertices, there must also be a singleton in the graph by
parity. Then choosing this singleton along with almost half the vertices in this component
(by the observations we made earlier) allows us to find a size-n independent set of the
original graph, contradiction.
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e If it contains an even number of vertices, by the observations it has 8 vertices and > 10
edges. It readily follows that #edges > 2n — A+ 2 > n + 6, so we are done.

Problem B1.2 (Brazil 2012)

Find the least nonnegative integer b such that there exists a nonnegative integer n for which
the last 2021 decimal digits of ™ are all 1.
Mod spamming shows that the problem condition is equivalent to
e b=7 (mod 16),
e b=1 (mod 5), and
e b % 1 mod 25.
§2.2 Solutions to MOP Test 2

Problem B2.1

Does there exist a positive integer m for which the equation

(a® — a)(b® — b) = mc?

has infinitely many positive integer solutions (a, b, ¢) in which a # b?

Yes, m = 2 works.
First, we may generate infinitely many solutions (u, v) to u? —8v? = 9, with u odd, by starting
with (9,3) and using (u,v) — (3u + 8v,u + 3v).

For each such pair, (a,b,c) = (“T_l, “TH, -“24_1 -v) works by noting

(@ =) ) = (355 25 50) (252 5L 20)

Problem B2.2 (ISL 2020 A5)

A magician wishes to perform the following trick.

The magician announces a positive integer n, along with 2n real numbers
x1 < --- < z9, to the audience. Then an audience member secretly chooses a
polynomial P(z) of degree n with real coefficients and gives the magician the
values P(z1), ..., P(z2,) in any order. After that, the magician announces the
polynomial P(z).

Can the magician perform this trick?

No, the magician cannot perform this trick.
The audience member has enough freedom to select a polynomial P of degree < n with the
property that

P(x1) + P(z2) = P(x3) + P(x4) = -+ = P(x2n-1) + P(22,) = 0.
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(Indeed, the coefficients will generate a homogeneous system of n linear equations with n + 1
variables, which has a nontrivial solution.)

Now there are roots in the intervals [z1, z32], ..., [T2n—1, T2n], S0 deg P = n. Finally the values
P(x1), ..., P(x2,) are not all zero, so the magician cannot discern between P and —P.

Problem B2.3 (ISL 2020 G7)

Let P be a point on the circumcircle of acute triangle ABC. Let D, E, and F be the
reflections of P in the A-midline, B-midline, and C-midline. Let w be the circumcircle of
the triangle formed by the perpendicular bisectors of AD, BE, and CF.

Show that the circumcircles of AADP, ABEP, ACFP, and w share a common point.

Let H be the orthocenter and H4HpHc the orthic triangle. Let the negative inversion at H
sending AABC to AH4HpH¢c send P to Q. I claim @ is the desired concurrence point.
First, @ lies on the circles (ADP), (BEP), (CFP) by noting

HP-HQ=HA-HHy=HB-HHp=HC -HHc.

To show @ lies on w, it will suffice to show the Steiner line exists, i.e. the reflections X, Y, Z
of @ over the perpendicular bisectors of AD, BE, CF are collinear. In fact, I claim P, X, Y,
Z are all collinear.

Observe that L XPD = L{APQ = £APH, so

AYPZ = {YPE + AFPZ + {EPF
= ABPH + {HPC + £CAB =0°.

By symmetry we are done.

§2.3 Solutions to MOP Test 3
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Problem B3.1 (ISL 2020 N4)

For any odd prime p and integer n, let d,(n) denote the remainder when n is divided
by p. The sequence (zg,z1,...) is a p-dop if xo is a positive integer coprime to p, and
Tp+1 = Ty, + dp(zy) for all n > 0. Do there exist infinitely many primes p such that there
exist p-dops (ag,a1,...) and (bg,b1,...) for which. ..

(a) ... ap < by, infinitely often and a,, > b,, infinitely often?
(b) ... ap < by, but a,, > b, for all n > 1.

The answer to both parts is yes.

Solution (@) Any prime p = 3,5 (mod 8) works. For such p, two is not a quadratic residue,
so 2" =1 (mod p).

I claim the p-dops starting at 2 and p — 2 work. Observe a; = 21 (mod p) and b; = —2¢+!
(mod p) for each i. Then a;;(,_1)/2 = b; for each i, so

d(ao) + -+ + d(ap—2) = d(bo) + -+ + d(bp—2) =0 (mod p).

Observe, then, that for some N, we have a,—o = Np+ 1, ap—1 = Np+2, b,_o = Np—1,
bp—1=Np+p—2.

Moreover the sequences (ap—1,ap,...) and (byp—1,bp,...) are the sequences (ag,ar,...) and
(bo, b1, ...) shifted by Np, so we always have ap_1)4p—2 > bp(p—1)+p—2 and app_1)4p—1 <
bk(p—1)+p—1, as desired.

Solution (b) By Kobayashi infinitely many primes divide the sequence
ol 1, 28—-1, 2°—1,

For such primes p, we have 2°d4 = 1 (mod p), so m := ord(2 mod p) is odd.

If we consider equivalence classes modulo p where r and s are in the same class if r/s is a
power of two. Each class contains m elements, so there are (p — 1)/m classes. The sum of the
elements in all classes is p(p — 1)/2, and since m is odd this not a multiple of (p — 1)/m.

It follows that two equivalence classes have different sums, so for some two starting indices
ap and by, we have d(ag) + --- + d(ap—2) and d(bg) + - - - + d(by—2) are different multiples of p.
Without loss of generality the former is larger than the latter.

Then start at ag and N + by for some very large N, so initially the first sequence is larger, but
eventually the second is larger. Then there is some maximal index 7 with a; < b;, so starting
instead at a; and b; solves the problem.

Problem B3.2 (ISL 2020 G6)

Let ABC be a triangle with AB < AC, incenter I, and A-excenter 4. The incircle meets
BC at D. Define E = ADNBI4 and F = AD N CI4. Show that the circumcircles of
ANAID and AIAEF are tangent to each other.

Let Ip and I be the B— and C-excenters, and let S = BC N Iglc. Let (I4lglc) and
(BIC1,) intersect again at L. By radical axis theorem I4, L, S collinear, and also ZIAS =
ZIDS = /ZILS =90°,s0 A, I, D, L, S are concyclic.
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Ip

Let lines BI and CI meet (AID) again at E' and F’. Since AIBI¢ is cyclic, we have
SE' || B¢ by Reim’s. Analogously SF’ || CIp.
Finally,
LIALE = LIA\FE = LClIglc + £SAD
= ADIB+ £SID = £SIE' = {SLFE',

so L € EF', and similarly L € FF’. A homothety at L sends (AID) to (I4EF), so they are
tangent at L.

Problem K3.3 (ISL 2020 A2')

Let A denote the set of polynomials in 100 variables x1, ..., 100 with integer coefficients.
Find the smallest integer N such that any monomial z{'z5? - - - {1 with e;+ea+- - -+eq100 >
N can be expressed in the form

P1q1 + P2g2 + - -+ + P1009100,

where p;, q; € A for all i, and ¢; is a symmetric polynomial satisfying ¢;(0,0,...,0) = 0 for
all 1.

The answer is (180) + 1 =4951.

Proof N > 4951 work: I contend we can express all monomials of degree e;+- - -+e199 > 4951
in the form
p1S1 + p2S2 + -+ + p100S100,

where S; is the ith elementary symmetric polynomial (S} = x1 + - -+ + x100, S2 = 122 + -+ +
299100, etc.).

Say the character of a monomial 27 - - - 2% is €2 + €3 + - - - + 3. We will strong induct on
character, with the base case as follows: If all 100 variables appear with positive exponent, we
are done by factoring out zizs - - - x190.

Now assume without loss of generality e; > e > -+ > ejgp = 0. We can find an i with
ei+1 < e; — 2; otherwise, ejp0 = 0, eg9 < 1, egg < 2, ..., and thus e; + --- + ejp0 < 4950,
contradiction. Then subtract off

e1—1 _ea—1 e;—1 _€it+1,_€it2 €100 X
Ty Toh Xy Ty Tiig Ty - Si

10
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The remaining monomials have strictly smaller character, so by the inductive hypothesis they
are already expressible in the desired form.

Proof N = 4950 fails: I claim the monomial x%x% e $?80 does not have this property.
Decompose the polynomials p; into monomials and ¢; into homogeneous polynomials, so we
have

wyw - 2y = Zpi(ﬁl,.--,xloo) - qi(T1, .- T100),
i

with p; monomials and ¢; homogeneous and symmetric. Ignore all terms where deg p; + deg ¢; #
4950, so all terms in the expansion have degree 4950.
Now consider the following, where we sum over permutations « of {1,...,100}:

ngn(ﬂ) ‘1’;(2) e 1‘?:2100) = Z%(l‘la ce 5 T100) - Zpi(-%(na -+ Tr(100)) - 580 (),

However, observe the following:

Claim. If p; is a monomial with degp; < 4949, then

> pi(@a1)s - Ta(i00)) - sg(T) = 0.

Proof. Two exponents must be equal; otherwise, degp; > 0+1+4---+99 = 4950, contradiction.
If the exponents of x; and x; are equal, we can pair permutations that swap 7 and j, which will
cancel out in the summation. O

It follows that
Z sgn(7) - :L‘}r(z) . -x?{?loo) =0,

which is absurd.

§2.4 Solutions to MOP Test 4

Problem B4.1

Can you find 15 positive integers (not necessarily distinct) with product k, such that if
each of the integers is increased by 1, the new product is 2021k7?

92 10 3 1
2\ (5 Lor 202,
1 1) 100 2020

Problem B4.2 (ISL 2020 C4)
The Fibonacci numbers Fy, FY, ... are defined by Fy =0, F; =1, and Fpy0 = Fre1 + Fin
for all m > 0.

Let n > 2 be a fixed integer and suppose that S is a set of integers such that each element

of {Fy, Fs,...,F,} can be written as the difference of two elements in S. How small can
|S| be?

Yes:

The answer is k = [5] + 1, achieved by S = {Fy, I3, Fy, ..., Fop_2}.

11
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First solution Draw a graph G on the elements of S where we connect u and v whenever
|u —v| € {F1, F3, F5,...} is a Fibonacci number with odd index. Thus we need at least [%]
edges drawn.

Now I claim this graph is acyclic: consider a cycle with longest edge Fj, and let the other
edge lengths be F,,, ..., Fy, . Observe that we can write

Fo=+4F, +Fp+- -+ Fy <Fi+-+F_y<F,

contradiction.
Thus there are at least [§] + 1 vertices.

Second solution (mine) I will show for each k > 2, if |[S| = k, then S — S contains at most
2k — 3 distinct Fibonacci numbers. (If £ = 1, then at most 0.) To this end, we strong induct
on k, with base cases k =1 and k = 2 trivial.

Draw a graph G with k vertices representing the k elements of S. For each (distinct) Fibonacci
number f, draw an edge between one pair of nodes (u,v) with |u —v| = f. (If multiple (u,v)
exist, choose one.) It is equivalent to show at most 2k — 3 edges are drawn for & > 2 and none
for k = 1.

Let F; be the longest edge drawn. I contend that upon deleting the edge F; and the edge
F;—1 (if it exists), the graph is disconnected. Indeed, if a path exists between the two original
endpoints of the F; edge, then the sum of the lengths of the edges in this path is at most

> edge length < Fy + Fy + -« + F,_p < F,

contradiction.

Now split GG into G1 U G9 with k1 and kg vertices. Since k > 3 we assume without loss of
generality k1 > 2. Then G has at most 2k; — 3 edges by inductive hypothesis, and G2 has at
most 2ks — 2 edges (taking the case ko = 1 into consideration), so the number of edges in G is

#edges in G < 2+ (2ky — 3) + (2ke — 2) = 2k — 3.

Problem B4.3 (ISL 2020 N6)

For a positive integer n,

e let d(n) be the number of positive integer divisors of N, and

e let ©(n) be the number of positive integers at most n which are relatively prime to
n.

Does there exist a constant C' such that

for all n > 17

The answer is no.

Let p1, ..., pm be the first m primes, and let ¢q, ..., ¢ be primes with the property that
Pm < @i < 2py,. By prime number theorem, we can let r grow sufficiently large.

Consider n of the form

2°1—1 2°m —]
n=pi " Dm QUG

12
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Then we have
d(n) = 281t tsmArT  and w(d(n)) = 981t tsmtr—1

Moreover
p(n) =pi" o pl " T = 1) (g - 1),
Since qgl < Pm, the prime factors of ¢; — 1 are in among {p1,...,pm}, SO we can write
pn) =p}"
whence
d(e(n)) = [T =1+ fi).
Therefore,

A0y [ (52
d(ep(n)) — 2% =1+ f;
As the s; grow large, this approaches 2", which can be arbitrarily large.

Remark. Instead of using prime number theorem, we can prove there are unbounded primes in
[k,2k) as follows: if there are always at most R such primes, then then the sum of the reciprocals
of the primes in [2,4) U [4,8) U [8,16) U --- is

< +--- <R,

+=+

N &
| &
| &

but it also diverges.

§2.5 Solutions to MOP Quiz 5

Problem B5.1 (Brazil Undergrad 2010 Olympiad)

Let k& be a positive integer for which p = 60k 4+ 7 is prime. Suppose that p divides
102" + 8 - 10™ + 1 for some positive integer n. Show that k and n are even.

If n is odd, then
0=10""+8-10" +1
= (10" — 1) + 10" (mod p)
is the sum of two squares, but p{10"*! and p = 3 (mod 4), contradiction.
If n is even, then
0=10*"+8-10"+1
= (10" +1)*+6-10""  (mod p),
so since p{10"T!, —6 is a quadratic residue.

We can check —1 and 3 are not quadratic residues, so 2 is a quadratic residue, so p = £1
(mod 8). The desired conclusion follows.

Problem B5.2 (ISL 2020 G5)

Let ABCD be a cyclic quadrilateral. Points K, L, M, N are chosen on AB, BC, CD,
DA such that KLMN is a rhombus with KL || AC and LM || BD. Let wa, wg, wc, Wp
be the incircles of AANK, ABKL, ACLM, ADMN. Prove that the common internal
tangents to wa and we and the common internal tangents to wp and wp are concurrent.

Let F = ABNCD and G = AD N BC.

13
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I Claim 1. K and M lie on the bisector of ZG.

Proof. Note that ﬁ—g = % and % = %. Dividing, we have
AK AC GA
BK BD GB’

and similarly for M.

Analogously F', N, L collinear.

I Claim 2. F is the exsimilicenter of wys and wpg.

Proof. Since GKM is the perpendicular bisector of NL, by symmetry there is a circle wg

tangent to GN, GL, KN, KL.

By Monge’s theorem on wy, wp, wg, the exsimilicenter of w4, wp lies on line LN, which is

sufficient.

O]

Analogously we, wp have exsimilicenter F', and w4, wp and wp, we have exsimilicenter G.

This is enough to solve the problem. Let I4, Ip, Ic, Ip and ra, rg, 7c, rp be the centers

and radii of wu, wp, we, wp, so that % = :—g, etc. Also let X = I4lcN1Iglp.

G

14
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To finish, observe:

e By Monge on (w4, wp,wc) and (wa,wp,wp), the insimilicenters of (w4, wc) and (wp,wp)
lie on the line through F' and the insimilicenter of (wa,wp).

e By Monge on (wy,wp,wc) and (w4, wp,wp), the insimilicenters of (w4, wc) and (wp,wp)
lie on the line through G and the insimilicenter of (wa,wp).

Hence the two insimilicenters coincide.

I Remark (Generalization). The problem still holds if K LM N is any parallelogram.

§2.6 Solutions to ELMO

Problem ELMO1 (Eric Shen)

Let ABC be a triangle, and let P and @ lie on sides AB and AC such that the circumcircle
of AAPQ is tangent to segment BC at a point D. Let F lie on segment BC' such that
BD = EC. Line DP intersects the circumcircle of ACDQ again at X, and line DQ
intersects the circumcircle of ABDP again at Y. Prove that points D, E, X, Y are

concyclic.

We present two solutions.

First solution, by angle chasing Since L{BYD = ABPD = LAPD = {LAQD, we have
BY || AC and analogously CX || AB. Construct A’ = BY NCX, so ABA'C is a parallelogram.

A

Note that £ XDY = LPQD = LPAQ = £XA'Y,so D, X,Y, A" are concyclic. Now observe
that LA'ED = {ADE = {APD = {BPD = {BYD = LA’YD, so E lies on (DXA'Y) as

well.

Second solution, by circumcenters (Pitchayut Saengrungkongka) Let O, Op, O¢, S be the
centers of (APQ), (BDP), (CDQ), (DXY), respectively. Clearly, OOpSO¢ is parallelogram.

15
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The rest is just projection chasing: let proj(U) denote the projection of U onto BC. We have

proj(S) = proj(Op) + proj(O¢) — proj(O)
_B+D C+D
=T T~
B+C
2 )

D

so S lies on the perpendicular bisector of BC, which coincides with the perpendicular bisector
of DE.

Problem ELMO2 (Maxim Li)

Let n > 2 be an integer and let ay, ag, ..., a, be integers such that n | a; — i for all integers
1 <i < n. Prove there exists an infinite sequence by, be, ... with b; € {a1,as,...,a,} for
each 7, such that

> n—i € Z.

i=1
Evidently we may select integers zg, 21, 22, ... all in {a1,as,...,a,} so that

2w+ zan+---+ 2 =0 (mod nf)

for each k. Thus each of the numbers
Z0 21, 20 Z2 2 20
n’ n n2 n n2 nd
are integers.
Now since these integers are bounded, we may find k& and £ with
Zk—1
n

_ Zkye—1 20y

20 -
+...+m _|_..._|_W__

This implies that

20— z 1

ettt <1_>A_
n

n nt
Finally, let (b1,b2,...) = (Zktt—1, -« - 20 Zktb—1, - - - » 20 - - -), SO that
b b M_F..._A'_'Lk k=1 P
71_|_722+...: n - nez +...+%:A,
n o on 1—-— n n

n

which is an integer.

Problem ELMO3 (Maxim Li)

Each cell of a 100 x 100 grid is colored with one of 101 colors. A cell is diverse if, among the
199 cells in its row and column, every color appears at least once. Determine the maxmum
possible number of diverse cells.

The answer is 1002 — 4, achieved by generalizing the following construction:

1 2 3 45
31 2 45
2 31 4 5
4 4 4 5 6
6 6 6 6 5

16
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Now we prove that this is maximal. If some color appears at most 98 times, then we may
find two rows and two columns without this color, so we may find four non-diverse squares.

Henceforth all colors appear at least 99 times, so we may assume without loss of generality
the colors, 1, 2, ..., 100, 101 each appear 99, 99, ..., 99, 100 times.

For each £ = 1,...,100, select a color ¢; that does not appear in row k, and let xj be the
number of columns containing cg. If 2 # 100 for all k, there is a non-diverse square in every
row, so at least 100 non-diverse squares.

Otherwise x; = 100 for some k, implying ¢ = 101. Thus the color 101 does not appear in
every row, so repeating the argument with columns instead of rows gives the required bound.

Problem ELMO4 (Brandon Wang)

Suppose the set of positive integers is partitioned into n > 2 disjoint arithmetic progressions
S1, S2, ..., S, with common differences dy, ds, ..., d,. Prove that there exists exactly one

index 1 <7 < n such that
H dj € S5;.

J#i

Evidently every sequence is a complete residue class. Exactly one sequence contains
> 114
i ji
and that is the sequence that works.

Problem ELMO5 (Sean Li)

Let n and k be positive integers. Two infinite sequences (s;) and (t;) are equivalent if
s; = s; if and only if t; = t; for all positive integers i and j, and a sequence (¢;) has
equi-period k if tq, to, ... and tgyq1, tgro, ... are equivalent. In terms of n and k, how
many sequences of equi-period k£ are there in the set of sequences with each entry in the
set {1,2,...,n}, up to equivalence?

The answer is n”.

We'll construct a bijection between (ay,...,ax) € [n]¥ and equivalence classes of sequences
(s;) of equi-period k.

First direction: Suppose we are given (ay,...,ax) € [n]¥. Define a counter C' = 0. For each
i=1,2,. ..k

o Ifa; <n—C,thenlet s; =C+1, spy; =C+2, 5964 =C+3, ..., Sa_1)pts = C + a1,
and increment C' by a;.

e Otherwise let s; = n+1—a; < C, which will determine S, Sog+i, . - . through previously-
known cycles using numbers < C.

Second direction: Suppose we are given (s;). Keep a running counter C' = 0, that we will
use to number off the distinct values of observe. For each i =1,2,... k:

o If all of s;, Sk14, Sok+ti, - .. are greater than C' (i.e. we’ve never seen them before), then let
a; be the period of this sequence. Without loss of generality (up to equivalence) we may
let s, =C+1, sp1;=C+2, ..., $q,—1)kt+i = C + a;, and increment C by a;.

17
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o If any of s;, Sk1i, Sogrs, - .18 < C, then all of them are determined by a previously-known
cycle and each term < C'| so we may let a; =n+ 1 — s;.

It is easy to see that the above two operations are inverses of each other, so we have established
the desired bijection.

Problem ELMOG6 (Maxim Li)

In triangle ABC, points D, E, F lie on segments BC, C'A, AB, respectively, such that
each of the quadrilaterals AFDE, BDEF, CEF D has an incircle. Prove that the inradius
of AABC' is twice the inradius of ADEF.

Consider the anticomplementary triangle D'E'F’ of ADEF. We will show that the incircles
of AABC and AD'E'F’ coincide.

M

First note that AF — AE = DF — DE = D'E — D'F, so there is a circle wy tangent to rays
AE, AF, D'E, D'F. Define wg and w¢ analogously.

Assume for contradiction the circles w4, wg, we do not coincide. One can check that the
pairwise exsimilicenters of w4, wp, we are BCNE'F' =D, CANF'D' =E, ABND'E'=F.
By Monge’s theorem, points D, F, F' are collinear, contradiction.

§2.7 Solutions to Mock IMO

Problem MIMOL1 (ISL 2020 C2)

In a regular 100-gon, 41 vertices are colored black and the other 59 vertices are colored
white. A quadrilateral is weird if it has three vertices of one color and one vertex of the
other color.

Prove that there exist 24 pairwise disjoint weird quadrilaterals. (Two quadrilaterals are
disjoint if they have no common vertices and their interiors do not intersect.)

We prove the following claim:

Claim. Forn > 4, if #W > #B > 0 then we can find four consecutive vertices in the form
WWWB or WWBW.

18
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Proof. Let the vertices have color ay, ..., a, (indices modulo n) and suppose no substrings
WWW B or WW BW occur.

Then there are no three consecutive W, since otherwise the next occurrence of B causes a
WWW B substring to occur. Moreover substrings WW must be immediately followed by BB,
since otherwise WW BW occurs.

It is easy to see, then, that #W < # B, contradiction. O

Now take an arbitrary white vertex and delete it, so the initial value of (#B,#W) is (41, 58).
Repeatedly apply the claim, removing a weird quadrilateral with three white vertices whenever
#W > #B and a weird quadrilateral with three black vertices whenever #B > #W.

Observe #W and #B always have opposite parity, so they are never equal. Moreover the
ordered pair (#B,#W) will eventually reach (32,31), and from here |#B — #W| = 1 always,
so neither #W nor #B will reach 0 until there are at most three vertices remaining.

Thus we have found 24 disjoint weird quadrilaterals, as desired.

Problem MIMO2 (ISL 2020 A3)

Let a, b, ¢, d be positive real numbers satisfying (a + ¢)(b+ d) = ac+ bd. Find the smallest

possible value of

9,0,¢,4
b ¢ d a

By AM-GM,

S

(a+c)+<b+d>>2\/%+2\/b7
b d c a) bd ac
:2_a0+bd
vac - bd
(a+c)(b+d)

—9.

vac - bd
2v/ac -2

5

> 2
- Vac - bd
with equality attained by (a,b,c,d) = (2 +v/3,1,2 ++/3,1).

Problem MIMO3 (ISL 2020 N7)

Let S be a set of n > 3 positive integers, none of which is the sum of two different numbers
in S. Prove that there exists a permutation of S in which none of the middle n — 2 integers
divides the sum of its neighbors.

We present two solutions.
First solution, by explicit construction We’ll construct a permutation that strictly increases,

then strictly decreases.
Let S ={x1 <23 <--- < axn}. Then:

Claim 1. z;{z;+ 2 ifi > j,k

Proof. Note x; + 1, < 2x;. O
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Claim 2. For i, j, there is at most one index k < ¢ with z; | z; + xy.

Proof. If z; | xj + x, and z; | zj + gy, then x; | 2, — 2, But x; > |z, — Tk, O

Now place x, in our permutation, and say the initial direction is left. As we iterate i =
n—1n—-2,...,1:

o If, without loss of generality, the direction is left, then try placing z; to the left of the
permutation.

e If this doesn’t work, there is an “available spot” on the right of the permutation (by Claim
2), so place x; there and set the direction to right.

This yields a valid permutation.

Second solution, by induction (mine) In what follows, the notation x | y + z means z | y + 2z
orz|y—zandzfy+zmeans zty+zand z{y — 2.
We prove the following via induction on n:

Let S be a set of n positive integers, none of which is the sum of two different
numbers in S. There is a permutation of S such that each of the middle n — 2
integers divides neither the sum nor difference of its neighbors.

Our base case is n = 2, for which there is nothing to show.
Now assume the permutation

ai, az, agz, ..., Qan
obeys the required conditions. For A > max{a,...,a,} with A # a; + a; for all ¢, j, we will
show we can insert A somewhere in aq, ..., a,.

First note that for all ¢, j we have A { a; + a;. This is because |a; —a;j| < A and a; +a; < 24
always.

Now assume for contradiction A cannot be inserted anywhere. Then the following assertions
all hold:

e ay | as+ A (else a1, A, ag, ag, ... works);
e ay|a;tAoras|ag+ A (else a, ag, A, as, ...);

e as|ast Aoraylas+ A (else a, ag, as, A, ...);

e ...
® apo|ap-3stAoray|a, £ A (else..., an_9, A, an_1, an);
® ap_1|an—ot A (else ..., an_2, an_1, A, an);

However, note for all i that a; | a;—1 + A and a; | a;+1 + A cannot simultaneously hold, since
otherwise a; | a;—1 & a;+1, contradiction. It follows that

az a3t A = axtar+ A = az|ag+ A
azfas+t A = ayg|as+ A
agfast A = as|agt A

an-2fan-3t A = apn_1|a, £ A

_—
—
_
= ap_1f{an—2 =t A,

contradiction.
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Problem MIMO4 (ISL 2020 G3)
Let ABCD be a convex quadrilateral with min{ZB,ZD} > 90° and ZA = ZC. Points E
and F are the reflections of A in BC and CD. Segments AE and AF meet line BD at K

and L.
Prove that the circumcircles of ABEK and ADF'L are tangent to each other.

Let T be the reflection of A over BD, so that T lies on (BCD). Also note BA = BE = BC
and DA = DF = DT.

Claim. T lies on (BEK).

Proof. Note that KB bisects ZAKT and BE = BT. O

Analogously T lies on (DFL).

Let ¢; and ¢2 be the tangents to (BEKT) and (DFLT) at T. Then note that
L(t1,BT) = {TKB = {BKA = 90° + {DBC
and similarly £(DT,¢2) = 90° + £CDB, so

L(t1,45) = £(t1, BT) + £{BTD + £(DT, l5)
— (90° + £DBC) + £BCD + (90° + £CDB) = 0°,

as needed.

Problem MIMOS5 (ISL 2020 N5)
Determine all functions f: {1,2,...} — {0,1,2,...} such that

e f(xy) = f(x) + f(y) for all positive integers x and y, and

e there exists an infinite set S of positive integers such that f(a) = f(b) whenever
at+beS.

We present two solutions.
First solution The answer is f(z) = kv,(z) for k > 0 and p prime, for which S = {1,p,p%,p®...}

works.
Let p be minimal so that f(p) # 0. (Clearly p is prime, since if p = ab then f(a) = f(b) = 0.)
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Claim. S can only consist of numbers of the form kp’, where £ > 0 and k < p.

Proof. We know f(1), f(2),...,f(p—1)=0and f(pn) >0foralln >1,s0if 0 < k < p and
n > 0, then np 4+ k ¢ S; that is, elements of S are of the form

o k, with 0 < k < p, or
e multiples of p.

However one can easily check that ab € S implies a € S and b € S. Indeed, if z + y = a then
b+ yb = ab, so f(zb) = f(yb), implying f(z) = f(y). The claim follows. O

If S is infinite, then p¢ € S for all .
Assume that f(q) > 0 for some prime ¢ # p. Then p?~! =1 (mod q), so f(p?' —1) > 0=
f(1), implying p?~! ¢ S, contradiction.

Second solution by magic (shortlist packet) We can directly show:

Claim. If p is any prime with f(p) > 0, then S can only consist of numbers of the form
kp® with k < p.

Proof. If s € S, then for any r < s — 1,
P71 =it — - s =0
r - i=1 o
Thus (8;1) is not divisible by p for any r < s — 1, so the conclusion follows from Lucas’s

theorem. O

At last if f(p), f(¢) > 0 then we can apply the claim to p and ¢, showing that S must be
finite.

Problem MIMOG6 (ISL 2020 C8)

Anastasia and Bananastasia play a game on a board as follows. Initially, the board contains
2020 copies of the number 1. Each round proceeds as follows:
1. Anastasia erases two numbers x and y from the board.

2. Bananastasia writes one of  + y and |z — y| on the board.
After each round, the game ends if one of the following holds:

e one number on the board is larger than the sum of all other numbers on the board,
or

e all numbers on the board are zeroes.
After the game ends, Bananastasia must give Anastasia one slice of banana bread for

every number remaining on the board. How many slices of banana bread can Anastasia
guarantee, assuming optimal play from both players?

The answer is 7; for general n, the answer is s2(n), the sum of the digits of n in binary.

Anastasia’s strategy: We will show Ana can guarantee so(n) numbers remain for all n. To
this end, we induct on n, letting f(n) denote the answer for n.
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Pair up the 1’s (potentially leaving a 1), and ask Banana to combine them. In the end, there
are m twos, |n/2| —m zeros, and n mod 2 ones.

Then Ana focuses on the m twos, repeating her strategy. It can be seen that when the game
on the m twos terminates, the original game is also over. Hence the number of terms remaining
is

f(n) > (nmod 2) + mnlln(f(m) + |n/2] —m)
> (n mod 2) + mniln(SQ(m) + |n/2] —m)
= (nmod 2) + s2(|n/2]) = sa(n).

Bananastasia’s strategy: Let n be even. In essence, a strategy for Ana is a binary tree of
possibilities for Banana, given the current configuration of the board.
For each node corresponding to position ai, ..., a,, consider the multiset

S={xa1tart---+an}

of size 2™.

Claim (Black magic). For each node of the binary tree with corresponding multiset S, if
its children have multisets S7 and S5 then S = 57 LU Ss.

Proof. If Ana’s strategy chooses a and b, then the four values of +a + b match the two values
of £(a + b) and the two values of +(a — b). O

For such a binary tree, by taking the disjoint union of the multisets of all the leaves, you get
the original multiset.

There are (1772) zeroes in the root’s multiset. If we consider the leaves that correspond to
terminated configurations,

e the multisets of those in which one number is larger than the sum of the rest have no
zeroes, and

e the multisets (with size m) of those in which all numbers are zeroes have 2™ zeroes.

(oj2) =27

It follows that

implying minm < VQ((n72)) = s9(n).

Remark (Explicit strategy). We may explicitly state Banana’s strategy as follows. If F' is the
number of zeroes in S for some given configuration, then Banana’s strategy is to ensure that
vo(F) < sa(n) always. This is always possible, since

e the initial value of F, i.e. (;;2), has this property, and

e if the two possible values of F' after Banana’s move are F; and F5, the claim implies F' =
F + Fs.

Remark (n odd). The shortlist packet shows it is possible to modify the above remark to solve
the problem for n odd.
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We instead keep track of the sets

51:{+a1:ta2:|:a3:|:~--:|:an}
Szz{ia1+a2:|:a3:|:~~:|:an}
ng{:i:alzl:a2+a3:|:--~j:an}

Sn:{ialiagia3i~--+an}.

Let F; be the number of positive terms in S;, and let ' = min{F;}. The initial value of F is

n—1 1 n—1
2t ((n - 1>/2>’
with v (F) = sao(n) — 2.

If F splits into F; and F5 then it can be seen that min{vy(F1), ve(F2)} < vo(F), so Banana can
guarantee vo(F) < sa(n) — 2 always.

The multisets (with size m) of the terminated leaves, i.e. those in which one number is larger
than the rest, will have F' = 22, and the desired conclusion follows.

§2.8 Solutions to MOP Quiz 6

Problem B6.1 (ISL 2020 G1)

Let ABC be an isosceles triangle with CA = CB, and let D be a point on side AB with
AD < DB. Let P and @ be the projections from D to CB and CA. The perpendicular
bisector of PQ meets segment C'Q at E, and the circumcircles of AABC and ACPQ meet
at F # C.

Show that if P, E, F are collinear, then ZC' = 90°.

Let M be the midpoint of AB, so CPMDQF is cyclic. Since PCFQ is an isosceles trapezoid
and MP = MQ (from ZQCM = £LMCP), we have MC = MF. Drawing the circle centered
at M through C, it is clear MC' = MF is only possible if M is the center of (ABC).

9

Problem B6.2 (ISL 2020 A1)

Let n be a positive integer. Determine the smallest real number C such that, for all real z,

n 2n 1
\/x 2+ <Cz—-12+z.
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The answer is C > n/2.
ny\ 1/
If f(z) = (#) and g(x) = C(x — 1)? + z, we may compute that

$2n+1 1/n—1
2

f'(@) =2 (

1 2n 4 1/n—2
f(x) = §:U2”_2 (1‘2” +2n —1) (x 2+ )

—(n — n— x? 1/n=3
f/”(:B) — ( 1)(2 1) '$2n—3 (xQn _ 1) < + 1> )

2 2

Moreover
gd(x)=2C-2—-(2C—1) and ¢"(z)=2C.

Proof ¢ = n/2 works: Analysis of f” shows that the local maxima of f” are at 1 and —1.
Therefore we have
f'(x) < g"(x) Va.

Since f'(1) = ¢'(1) = 1, we have

Proof ¢ < n/2 fails: We have that f”(1) =n > 2c = ¢”(1), so by continuity for some € > 0
we have

() > d"(z)Vr e (1 —¢,1+¢).
Since f'(1) = ¢'(1) = 1, we have
fl@) < g'(z) Vo e (1-¢,1)
f(z) > ¢ (z) Vo € (1,1 +¢).
Finally since f(1) = g(1) = 1, we have
f(z) >g(x) Ve e (1 —¢e14¢)\ {1},
contradiction.
Remark. You can be almost sure of the answer by computing the Taylor approximation

a2+ 1 —-1)?
z 2+ zl+(m—1)+n-<$2).
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Remark (Alternate solution sketch, Ankan Bhattacharya). Let = 12=< for £ € R. Then we want
to show
(146 +(1—o)™ < (5202 + (1 - e)(1 +¢))
= (1-e)™+1+e)®™ < (1+ D))",
where it turns out D = 2n — 1, by checking that every coefficient on the left is smaller than the
corresponding coefficient on the right.

Remark. Mildorf once proved the following in his quintessential handout about inequalities:

Let £ > —1 be an integer. Then for all positive reals a and b,

(14 k)(a — b)? + 8ab - »]aF + bk
4(a+b) - 2
with equality if and only if @ = b or £ = £1, where the power mean k£ = 0 is interpreted

to be the geometric mean v ab. Moreover, if k < —1, then the inequality holds in the
reverse direction, with equality if and only if a = b.

§2.9 Solutions to MOP Test 7

Problem B7.1 (ISL 2020 G4)

Let n > 6 be an integer and D, ..., D, be pairwise disjoint closed disks in the plane with
radii Ry > --- > R,. For each i € {1,...,n}, let P; be a point on D;. Let O be a point in
the plane. Prove that

OPL+OP, +---+ 0P, 2 Rs + R7 + - - - + Rn.

I contend OPF; > Rg for some ¢ < 6. This suffices by induction.
Drop the condition Ry > Re > --- > Rg, and instead number the disks Dy, ..., Dg counter-

clockwise with respect to O. Let the center of D; be O;.

Since Z01005+ - - -+ Z0g00;1 = 360°, for some index ¢ we have Z0;00;1 < 60°. Without
loss of generality OO; > OO;4+1. Evidently Z0;00;41 is not the largest angle in AO;00;41,
i.e. O;0;41 is not the longest side, so

00; > 0;0;41 > R + Ri11.
This allows us to conclude

OPF; > 00; — R; > Rjy1 > min{Rl, ... ,RG}.

Problem B7.2 (ISL 2020 C5)

Let p be an odd prime, let N = %(p:)' —p) — 1, and let S be a subset of {1,..., N}. Show
that there exists an integer a € {1,...,p — 1} such that for all positive integers n € N,

SN{l,...,n a
SO (L.l Lo
n p

Let S, =|SN{1,...,n}.
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Assume for contradiction there exist ny < no < --- < n,_1 and a permutation a1, ..., ap—1
2
of {1,...,p — 1} such that Sp,, = a;n;. The goal is to show np_1 > %.

Drop the p prime condition. Analyzing the difference between S; and S;11, we must have
0 < nip1ai41 — niai < N p — nip.

In other words,

a; p—a
N;11 2 N, - max T (-
i+l P — iyl

The above condition suffices to prove the problem.
The idea is that we will go “up” to p — 1 and then go “down.” Let k be the largest integer
such that 1, ..., k all appear before a, = p — 1.

Case 1: k£ < %. Let a,, = £ be the last of 1, ..., k that appear, and let a,, = k+ 1. (Hence
we have l <u<v<w<p-—1.)
But (n;) is strictly increasing, so L > 1, n, > u > k.

a —a
Np_1 = Ny Zmax{v P U}cv

aw,p_aw

> {av p_av} {au p_au}

> max<{ —, max {4 —, Ny
Ay P — Qu Gy P — Ay

p—1 p—1 -1
> =20 -k> (p—k)- k>
e R R s G L
Case 2: kz>%. In this case, jumping up suffices. Let a,, = ¢ be the last of 1,...,%‘50

appear. Then

Qa —a
nplznvzmaX{u,p "}nu

ay’ p— ay
p+1 p—1 p*—1

= — . >
(p—10) ny > 5 5 1

Problem B7.3 (ISL 2020 G8)

Let ABC be a triangle with incenter I and circumcircle I'. Circles wp passing through B

and we passing through C' are tangent at I. Let wp meet minor arc AB of I at P and AB

at M # B, and let wc meet minor arc AC of T' at Q and AC at N # C, Rays PM and

QN meet at X. Let Y be a point such that Y B is tangent to wp and Y'C is tangent to wc.
Show that A, X, Y are collinear.

Let PM and QN intersect I" again at P’ and Q.

Claim 1. BCNM is tangential, and Y € I.

Proof. If ¢ is the common tangent to wg and we at I, then

LMIN = £(3T,0) + £(£,NT)
=AMBI + LICN = LIBC + £BCI = £BIC,

implying that BCN M is tangential. Moreover
LY BM = £BIM = LCIN = {YCN,
so Y lieson I'. O
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Claim 2. Y A is tangent to (AMP) and (ANQ).

Proof. Note that
LAPM = {APB+ ABPM = {AYB+ AYBM = AY AM,

and analogously L AQN = LY AN. O
I Claim 3. M, N, P, QQ are concyclic.

Proof. If PM and QN intersect I again at P’ and ', then By Reim’s theorem it will suffice
to show MN || P'Q".
If the incircle touches BC and M N at D and T, then
L(P'Q',BC) = £LQ'P'C + LP'CB = {NQC + £MPB
= ANIC + AMIB =24{MIB = LTID = £(MN, BO),

as required. O

By radical axis theorem on (AMP), (ANQ), (M NPQ), the desired conclusion follows, with
points A, P, @ on the common tangent of (AM P) and (ANQ).

Remark (Alternate solution sketch). After finding ¥ € T', we may invert at I. It turns out

M N PQ becomes an isosceles trapezoid, and it is not hard to finish from here, either in the inverted
or original diagram.
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