USAJMO 2019

Compiled by Eric Shen

Last updated May 26, 2020

Contents

0	Problems	2
1	USAJMO 2019/1 (Jim Propp)	3
2	USAJMO 2019/2 (Ankan Bhattacharya)	4
3	USAJMO 2019/3 (Ankan Bhattacharya)	5
4	USAJMO 2019/4 (Ankan Bhattacharya, Zack Chroman, Anant Mudgal)	7
5	USAJMO 2019/5 (Ricky Liu)	8
6	USAJMO 2019/6 (Yannick Yao)	10

§0 Problems

Problem 1. There are a + b bowls arranged in a row, numbered 1 through a + b, where a and b are given positive integers. Initially, each of the first a bowls contains an apple, and each of the last b bowls contains a pear.

A legal move consists of moving an apple from bowl i to bowl i+1 and a pear from bowl j to bowl j-1, provided that the difference i-j is even. We permit multiple fruits in the same bowl at the same time. The goal is to end up with the first b bowls each containing a pear and the last a bowls each containing an apple. Show that this is possible if and only if the product ab is even.

Problem 2. Let \mathbb{Z} be the set of all integers. Find all pairs of integers (a,b) for which there exist functions $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$f(g(x)) = x + a$$
 and $g(f(x)) = x + b$

Problem 3. Let ABCD be a cyclic quadrilateral satisfying $AD^2 + BC^2 = AB^2$. The diagonals of ABCD intersect at E. Let P be a point on side AB satisfying $\angle APD = \angle BPC$. Show that line PE bisects \overline{CD} .

Problem 4. Let ABC be a triangle with $\angle ABC$ obtuse. The A-excircle is a circle in the exterior of $\triangle ABC$ that is tangent to side BC of the triangle and tangent to the extensions of the other two sides. Let E, F be the feet of the altitudes from B and C to lines AC and AB, respectively. Can line EF be tangent to the A-excircle?

Problem 5. Let n be a nonnegative integer. Determine the number of ways that one can choose $(n+1)^2$ sets $S_{i,j} \subseteq \{1,2,\ldots,2n\}$, for integers $0 \le i \le n$ and $0 \le j \le n$ such that:

- for all $0 \le i, j \le n$, the set $S_{i,j}$ has i + j elements; and
- $S_{i,j} \subseteq S_{k,l}$ whenever $0 \le i \le k \le n$ and $0 \le j \le l \le n$.

Problem 6. Two rational numbers $\frac{m}{n}$ and $\frac{n}{m}$ are written on a blackboard, where m and n are relatively prime integers. At any point, Evan may pick two of the numbers x and y written on the board and write either their arithmetic mean $\frac{x+y}{2}$ or their harmonic mean $\frac{2xy}{x+y}$ on the board as well. Find all pairs (m,n) such that Evan can write 1 on the board in finitely many steps.

§1 USAJMO 2019/1 (Jim Propp)

Problem 1 (USAJMO 2019/1)

There are a + b bowls arranged in a row, numbered 1 through a + b, where a and b are given positive integers. Initially, each of the first a bowls contains an apple, and each of the last b bowls contains a pear.

A legal move consists of moving an apple from bowl i to bowl i+1 and a pear from bowl j to bowl j-1, provided that the difference i-j is even. We permit multiple fruits in the same bowl at the same time. The goal is to end up with the first b bowls each containing a pear and the last a bowls each containing an apple. Show that this is possible if and only if the product ab is even.

The problem consists of two parts:

Proof of sufficiency: Assume ab is even, and since the problem is symmetric under reflection, without loss of generality let a be even. I will show by induction on b that the goal is always possible.

Consider b = 0 as the base case — there is nothing to show. Take the leftmost pear (in bowl a + 1), and move it all the way to bowl 1; when the pear moves from bowl n + 1, also move the apple in bowl a + 2 - n.

Each apple moves exactly once, and so after this process, the leftmost bowl contains a pear, the next a bowls each contain an apple, and the rightmost b-1 bowls contain a pear. Then apply the induction hypothesis on b-1 to sort the remaining a+b-1 apples.

Proof of necessity: Assume ab is odd. We can check that in total, ab moves occur. There are two types of moves:

- Moving two fruit from odd-numbered bowls to even-numbered bowls.
- Moving two fruit from even-numbered bowls to odd-numbered bowls.

Since in both the beginning and the end of the process, each bowl contains a fruit, the two types of moves occur equally often. This is absurd, since ab is odd.

§2 USAJMO 2019/2 (Ankan Bhattacharya)

Problem 2 (USAJMO 2019/2)

Let \mathbb{Z} be the set of all integers. Find all pairs of integers (a,b) for which there exist functions $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$f(g(x)) = x + a$$
 and $g(f(x)) = x + b$

The answer is |a| = |b|. Here are possible constructions:

- For (a, a), take $f(x) \equiv x + 2a$, $g(x) \equiv x a$.
- For (a, -a), take $f(x) \equiv 2a x$, $g(x) \equiv a x$.

Evidently $a = 0 \iff b = 0$, so in what follows, we assume a, b are nonzero.

Assume for contradiction $|a| \neq |b|$, and without loss of generality |a| > |b|. By the triple involution trick,

$$f(x+b) = f(g(f(x))) = f(x) + a$$

Hence all residues of f(x) modulo |a| are covered by f(0), f(1), ..., f(|b|-1); in particular, f is not surjective modulo |a|. This is absurd, since f(g(x)) is clearly surjective.

§3 USAJMO 2019/3 (Ankan Bhattacharya)

Problem 3 (USAMO 2019/2)

Let ABCD be a cyclic quadrilateral satisfying $AD^2 + BC^2 = AB^2$. The diagonals of ABCD intersect at E. Let P be a point on side AB satisfying $\angle APD = \angle BPC$. Show that line PE bisects \overline{CD} .

First solution, by symmedians There is a point P on side AB with $AP = AD^2/AB$ and $BP = BC^2/AB$. We have

$$\frac{PA}{PB} = \left(\frac{AD}{BC}\right)^2 = \left(\frac{EA}{EB}\right)^2$$

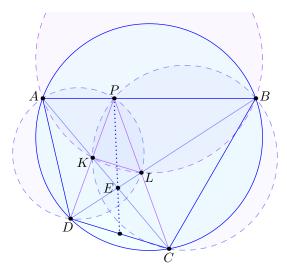
since $\triangle AED \sim \triangle BEC$. Then \overline{EP} is the E-symmedian of $\triangle EAB$, so \overline{EP} bisects \overline{CD} .

By monotonicity it remains to check $\angle APD = \angle BPC$. Since $AP \cdot AB = AD^2$, we have $\triangle APD \sim \triangle ADB$, and analogously $\triangle BPC \sim \triangle BCA$. Hence $\angle APD = \angle BDA = \angle BCA = \angle CPB$, end proof.

Second (elementary) solution, from official solutions packet As before, construct P so that $AP \cdot AB = AD^2$ and $BP \cdot BA = BC^2$. Then $\triangle APD \sim \triangle ADB$, $\triangle BPC \sim \triangle BCA$, so

$$\theta := \angle APD = \angle BDA = \angle BCA = \angle CPB$$
.

The task is to show \overline{PE} bisects \overline{CD} .



Let $K = \overline{AC} \cap \overline{PD}$, $L = \overline{BD} \cap \overline{PC}$.

Claim 1. APLD and BPKC are cyclic.

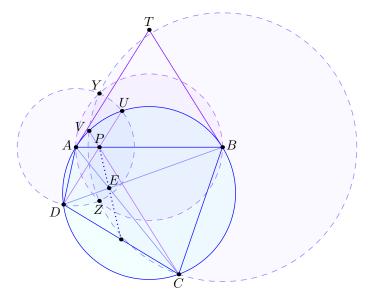
Proof. These follow from $\angle LDA = \theta = \angle LPA$ and $\angle BCK = \theta = \angle BPK$ respectively.

Claim 2. AKLB is cyclic.

Proof. We have $\angle AKB = \angle CKB = \angle CPB = \theta$ and similarly $\angle ALB = \theta$.

By Reim's theorem on (ABCD), (AKLB), we have $\overline{KL} \parallel \overline{CD}$. If $M = \overline{PE} \cap \overline{CD}$, then MC = MD by Ceva's theorem on $\triangle PCD$.

Third solution, by radical axes Let Ω be the circumcircle of ABCD, let Γ be the circle with diameter AB, and let ω_A , ω_B be the circles centered at A, B with radii AD, BC, respectively.



The condition $AD^2 + BC^2 = AB^2$ means ω_A , ω_B are orthogonal, so their intersection points Y, Z lie on Γ . Let P be the midpoint of \overline{YZ} . Then P lies on \overline{AB} , the radical axis of Ω , Γ , so P is the common radical center of Ω , Γ , ω_A , ω_B .

Let the tangents to Ω at A, B meet at T, and let \overline{DP} , \overline{CP} meet Ω again at U, V. Since \overline{DU} is the radical axis of Ω , ω_A , we have $\overline{AT} \parallel \overline{DU}$. Similarly $\overline{BT} \parallel \overline{CV}$, so $\angle APD = \angle BAT = \angle CPB$. By monotonicity, P is the point described in the problem statement.

Finally we have

$$\frac{PA}{PB} = \left(\frac{YA}{YB}\right)^2 = \left(\frac{AD}{BC}\right)^2 = \left(\frac{EA}{EB}\right)^2,$$

so \overline{EP} is the E-symmedian of $\triangle EAB$, which bisects \overline{CD} .

Remark. This was my solution in-contest, and I believe it is pretty motivated. The four circles in the problem are the most natural way to construct the diagram, and an in-scale diagram suggests P lies on \overline{YZ} . The rest is not hard to prove.

Fourth solution, by inversion (Evan Chen) As noted above, the circle ω_A centered at A with radius AD is orthogonal to the circle ω_B centered at B with radius BC. We let \mathbf{I}_A , \mathbf{I}_B denote inversion with respect to ω_A , ω_B .

Let the radical axis of ω_A , ω_B intersect \overline{AB} at P; by design, $P = \mathbf{I}_A(B) = \mathbf{I}_B(A)$. This already implies that

$$\angle APD \stackrel{\mathbf{I}_{\underline{A}}}{=} \angle BDA = \angle BCA \stackrel{\mathbf{I}_{\underline{B}}}{=} \angle CPB,$$

so by monotonicity, P is the point described in the problem statement.

Claim. The point $K = \mathbf{I}_A(C)$ lies on ω_B and \overline{DP} . Similarly $L = \mathbf{I}_B(D)$ lies on ω_A and \overline{CP} .

Proof. Since $\omega_A \perp \omega_B$, it follows that $K \in \omega_B$. For $K \in \overline{DP}$, note ABCD is cyclic, so $P = \mathbf{I}_A(B)$, $K = \mathbf{I}_A(C)$, $D = \mathbf{I}_A(D)$ are collinear.

Finally since C, L, P collinear, A is concyclic with $K = \mathbf{I}_A(C)$, $L = \mathbf{I}_A(L)$, $B = \mathbf{I}_A(B)$, i.e. AKLB is cyclic. Hence $\overline{KL} \parallel \overline{CD}$ by Reim's theorem, and \overline{PE} bisects \overline{CD} by Ceva's theorem.

§4 USAJMO 2019/4 (Ankan Bhattacharya, Zack Chroman, Anant Mudgal)

Problem 4 (USAJMO 2019/4)

Let ABC be a triangle with $\angle ABC$ obtuse. The A-excircle is a circle in the exterior of $\triangle ABC$ that is tangent to side BC of the triangle and tangent to the extensions of the other two sides. Let E, F be the feet of the altitudes from B and C to lines AC and AB, respectively. Can line EF be tangent to the A-excircle?

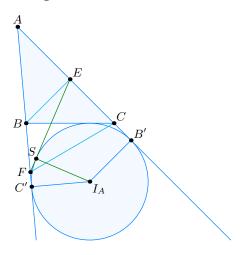
It is not possible. Assume for contradiction line EF is tangent to the A-excircle.

First solution, by similarity Since $\angle B = 90^{\circ}$, we have A, E, C collinear in that order, and also A, B, F collinear in that order.

Note the A-excircle is tangent to all three sides of $\triangle AEF$; I contend it is its A-excircle as well. Indeed, the A-excircle lies in the interior of $\angle EAF$, but it touches \overline{AC} farther away from A than E.

But $\triangle ABC$, $\triangle AEF$ are inversely similar, and they share an A-exadius, so they are congruent. Now $AB = AE = AB\cos A$, so $\cos A = 1$ and $\angle A = 0^{\circ}$, absurd.

Second solution, by length chasing Let the A-excircle touch \overline{AC} , \overline{AB} , \overline{EF} at B', S, C'.



If ρ denotes the semiperimeter, then

$$BC \cos A = EF = ES + FS = EB' + FC'$$
$$= (\rho - AE) + (\rho - AF)$$
$$= AB + BC + CA - (AB + CA) \cos A,$$

from which $\cos A = 1$, absurd.

§5 USAJMO 2019/5 (Ricky Liu)

Problem 5 (USAMO 2019/4)

Let n be a nonnegative integer. Determine the number of ways that one can choose $(n+1)^2$ sets $S_{i,j} \subseteq \{1, 2, ..., 2n\}$, for integers $0 \le i \le n$ and $0 \le j \le n$ such that:

- for all $0 \le i, j \le n$, the set $S_{i,j}$ has i+j elements; and
- $S_{i,j} \subseteq S_{k,l}$ whenever $0 \le i \le k \le n$ and $0 \le j \le l \le n$.

The answer is $(2n)! \cdot 2^{n^2}$.

First solution, by direct computation Place the sets in an $(n+1) \times (n+1)$ grid shown below, and select the blue sets $S_{0,0}, S_{0,1}, \ldots, S_{0,n}, S_{1,n}, \ldots, S_{n,n}$. Each admits exactly one more element than the previous set in the sequence, so there are (2n)! ways to select the blue sets.

1357			1234578	12345678
135	1345	13457	134578	1345678
13	135	1357	13578	135678
1	15	157	1578	15678
Ø	5	57	578	5678

It remains to select the remaining sets. First note that the conditions given in the problem statement are equivalent to $S_{i,j} \subset S_{i+1,j}$ and $S_{i,j} \subset S_{i,j+1}$ for all $0 \le i,j \le n$ (by transitivity).

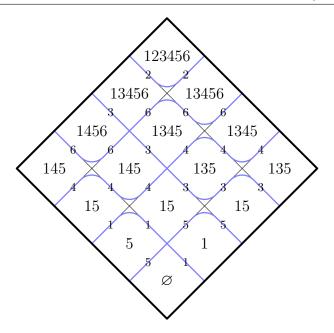
We determine the remaining sets in the following order: $S_{1,n-1}$, $S_{1,n-2}$, ..., $S_{1,0}$, $S_{2,n-1}$, $S_{2,n-2}$, ..., $S_{2,0}$, and so on. When it comes to determine $S_{i,j}$, we will have already chosen $S_{i-1,j}$ and $S_{i,j+1}$.

$$\begin{bmatrix} 1357 & 12357 \\ 135 & 1345 \end{bmatrix}$$

It is given $S_{i,j} \setminus S_{i-1,j}$ is a single-element subset of $S_{i,j+1} \setminus S_{i-1,j}$, which has cardinality 2; hence we have 2 choices.

There were (2n)! ways to select the initially blue sets, and 2^{n^2} ways to select the remaining sets. The conclusion follows.

Second solution, by bijection (Daniel Zhu) Arrange the sets into the obvious $(n+1)\times(n+1)$ square grid. Here, we orient the grid diagonally so that $S_{0,0}$ is on the bottom and $S_{n,n}$ is on the top. Label an internal edge with i if crossing an edge while going up adds the element i to the set in the relevant square.



It follows from the $S_{i,j} \subseteq S_{k,\ell}$ condition that the set of edges with label i must follow a path from the left end of the square to the right end of the square, so we can associate every valid arrangement of sets with a partitioning of the internal edges into 2n paths, labeled 1, 2, ..., 2n, traveling from the left end of the square to the right end of the square. Indeed, this correspondence is reversible, since given the system of labeled paths one can associate a square with the set of all numbers k so that the path labeled with k passes below the square.

It suffices to show that there are 2^{n^2} ways to choose all the ways to partition the unlabeled edges into 2n unlabeled paths. However, since every edge is utilized, this is equivalent to, for each of the n^2 internal vertices, choosing whether the two paths that pass through the vertex end up crossing or not. Thus, we are done.

§6 USAJMO 2019/6 (Yannick Yao)

Problem 6 (USAMO 2019/5)

Two rational numbers $\frac{m}{n}$ and $\frac{n}{m}$ are written on a blackboard, where m and n are relatively prime integers. At any point, Evan may pick two of the numbers x and y written on the board and write either their arithmetic mean $\frac{x+y}{2}$ or their harmonic mean $\frac{2xy}{x+y}$ on the board as well. Find all pairs (m,n) such that Evan can write 1 on the board in finitely many steps.

This is possible if and only if m + n is a power of 2. In what follows, let $r = \frac{m}{n}$, so we begin with r and $\frac{1}{r}$ on the board.

Proof of sufficiency: Assume m + n is a power of 2. It is possible to write 1 on the board only by taking arithmetic means.

Claim 1. If x and y are on the board, then for all nonnegative integers u, v, t with $u + v = 2^t$, it is possible to construct

$$\frac{u}{2^t} \cdot x + \frac{v}{2^t} \cdot y.$$

Proof. The proof is by induction on t, with t = 0 given. Now suppose the hypothesis holds for t; we will show it holds for t + 1.

For $u+v=2^{t+1}$, if $0\in\{u,v\}$, then we are already done. Otherwise, note that

$$\frac{u}{2^{t+1}} \cdot x + \frac{v}{2^{t+1}} \cdot y = \frac{1}{2} \left[\left(\frac{1}{2^t} \cdot x + \frac{1}{2^t} \cdot y \right) + \left(\frac{u-1}{2^t} \cdot x + \frac{v-1}{2^t} \cdot y \right) \right],$$

which is constructable.

Finally take x = r, $y = \frac{1}{r}$, u = n, v = m. We can construct

$$\frac{n}{m+n} \cdot r + \frac{m}{m+n} \cdot \frac{1}{r} = 1.$$

Proof of necessity: Suppose p is an odd prime dividing m + n. Then both numbers on the board are equivalent to $-1 \pmod{p}$. The main idea is in the following claim:

Claim 2. If $x \equiv y \equiv -1 \pmod{p}$, then both their arithmetic mean and harmonic mean are $-1 \pmod{p}$.

Proof. This is fairly obvious: since $2 \not\equiv 0 \pmod{p}$ and $x + y \equiv -2 \not\equiv 0 \pmod{p}$, we can check

$$\frac{x+y}{2} \equiv \frac{-2}{2} \equiv -1 \pmod{p} \quad \text{and} \quad \frac{2xy}{x+y} \equiv \frac{2}{\frac{1}{x} + \frac{1}{y}} \equiv \frac{2}{-2} \equiv -1 \pmod{p},$$

and the claim follows. \Box

If Evan can write 1 on the board, then $1 \equiv -1 \pmod{p}$, which is absurd.