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USAJMO 2019 Eric Shen (Last updated May 26, 2020)

§0 Problems

Problem 1. There are a+ b bowls arranged in a row, numbered 1 through a+ b, where a and

b are given positive integers. Initially, each of the first a bowls contains an apple, and each of

the last b bowls contains a pear.

A legal move consists of moving an apple from bowl i to bowl i+ 1 and a pear from bowl j

to bowl j − 1, provided that the difference i− j is even. We permit multiple fruits in the same

bowl at the same time. The goal is to end up with the first b bowls each containing a pear and

the last a bowls each containing an apple. Show that this is possible if and only if the product

ab is even.

Problem 2. Let Z be the set of all integers. Find all pairs of integers (a, b) for which there

exist functions f : Z→ Z and g : Z→ Z satisfying

f(g(x)) = x+ a and g(f(x)) = x+ b

Problem 3. Let ABCD be a cyclic quadrilateral satisfying AD2 +BC2 = AB2. The diagonals

of ABCD intersect at E. Let P be a point on side AB satisfying ∠APD = ∠BPC. Show that

line PE bisects CD.

Problem 4. Let ABC be a triangle with ∠ABC obtuse. The A-excircle is a circle in the

exterior of 4ABC that is tangent to side BC of the triangle and tangent to the extensions of

the other two sides. Let E, F be the feet of the altitudes from B and C to lines AC and AB,

respectively. Can line EF be tangent to the A-excircle?

Problem 5. Let n be a nonnegative integer. Determine the number of ways that one can

choose (n+ 1)2 sets Si,j ⊆ {1, 2, . . . , 2n}, for integers 0 ≤ i ≤ n and 0 ≤ j ≤ n such that:

• for all 0 ≤ i, j ≤ n, the set Si,j has i+ j elements; and

• Si,j ⊆ Sk,l whenever 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ n.

Problem 6. Two rational numbers m
n and n

m are written on a blackboard, where m and n are

relatively prime integers. At any point, Evan may pick two of the numbers x and y written on

the board and write either their arithmetic mean x+y
2 or their harmonic mean 2xy

x+y on the board

as well. Find all pairs (m,n) such that Evan can write 1 on the board in finitely many steps.
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USAJMO 2019 Eric Shen (Last updated May 26, 2020)

§1 USAJMO 2019/1 (Jim Propp)

Problem 1 (USAJMO 2019/1)

There are a + b bowls arranged in a row, numbered 1 through a + b, where a and b are

given positive integers. Initially, each of the first a bowls contains an apple, and each of

the last b bowls contains a pear.

A legal move consists of moving an apple from bowl i to bowl i+ 1 and a pear from bowl

j to bowl j − 1, provided that the difference i− j is even. We permit multiple fruits in the

same bowl at the same time. The goal is to end up with the first b bowls each containing a

pear and the last a bowls each containing an apple. Show that this is possible if and only

if the product ab is even.

The problem consists of two parts:

Proof of sufficiency: Assume ab is even, and since the problem is symmetric under reflec-

tion, without loss of generality let a be even. I will show by induction on b that the goal is

always possible.

Consider b = 0 as the base case — there is nothing to show. Take the leftmost pear (in bowl

a+ 1), and move it all the way to bowl 1; when the pear moves from bowl n to bowl n− 1, also

move the apple in bowl a+ 2− n.

Each apple moves exactly once, and so after this process, the leftmost bowl contains a pear,

the next a bowls each contain an apple, and the rightmost b − 1 bowls contain a pear. Then

apply the induction hypothesis on b− 1 to sort the remaining a+ b− 1 apples.

Proof of necessity: Assume ab is odd. We can check that in total, ab moves occur. There

are two types of moves:

• Moving two fruit from odd-numbered bowls to even-numbered bowls.

• Moving two fruit from even-numbered bowls to odd-numbered bowls.

Since in both the beginning and the end of the process, each bowl contains a fruit, the two

types of moves occur equally often. This is absurd, since ab is odd.
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§2 USAJMO 2019/2 (Ankan Bhattacharya)

Problem 2 (USAJMO 2019/2)

Let Z be the set of all integers. Find all pairs of integers (a, b) for which there exist functions

f : Z→ Z and g : Z→ Z satisfying

f(g(x)) = x+ a and g(f(x)) = x+ b

The answer is |a| = |b|. Here are possible constructions:

• For (a, a), take f(x) ≡ x+ 2a, g(x) ≡ x− a.

• For (a,−a), take f(x) ≡ 2a− x, g(x) ≡ a− x.

Evidently a = 0 ⇐⇒ b = 0, so in what follows, we assume a, b are nonzero.

Assume for contradiction |a| 6= |b|, and without loss of generality |a| > |b|. By the triple

involution trick,

f(x+ b) = f(g(f(x))) = f(x) + a

Hence all residues of f(x) modulo |a| are covered by f(0), f(1), . . ., f(|b| − 1); in particular, f

is not surjective modulo |a|. This is absurd, since f(g(x)) is clearly surjective.
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§3 USAJMO 2019/3 (Ankan Bhattacharya)

Problem 3 (USAMO 2019/2)

Let ABCD be a cyclic quadrilateral satisfying AD2 + BC2 = AB2. The diagonals of

ABCD intersect at E. Let P be a point on side AB satisfying ∠APD = ∠BPC. Show

that line PE bisects CD.

First solution, by symmedians There is a point P on side AB with AP = AD2/AB and

BP = BC2/AB. We have

PA

PB
=

(
AD

BC

)2

=

(
EA

EB

)2

since 4AED ∼ 4BEC. Then EP is the E-symmedian of 4EAB, so EP bisects CD.

By monotonicity it remains to check ∠APD = ∠BPC. Since AP · AB = AD2, we have

4APD ∼ 4ADB, and analogously 4BPC ∼ 4BCA. Hence ]APD = ]BDA = ]BCA =

]CPB, end proof.

Second (elementary) solution, from official solutions packet As before, construct P so that

AP ·AB = AD2 and BP ·BA = BC2. Then 4APD ∼ 4ADB, 4BPC ∼ 4BCA, so

θ := ]APD = ]BDA = ]BCA = ]CPB.

The task is to show PE bisects CD.

A B

C

D

P

E

K
L

Let K = AC ∩ PD, L = BD ∩ PC.

Claim 1. APLD and BPKC are cyclic.

Proof. These follow from ]LDA = θ = ]LPA and ]BCK = θ = ]BPK respectively.

Claim 2. AKLB is cyclic.

Proof. We have ]AKB = ]CKB = ]CPB = θ and similarly ]ALB = θ.

By Reim’s theorem on (ABCD), (AKLB), we have KL ‖ CD. If M = PE ∩ CD, then

MC = MD by Ceva’s theorem on 4PCD.
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Third solution, by radical axes Let Ω be the circumcircle of ABCD, let Γ be the circle with

diameter AB, and let ωA, ωB be the circles centered at A, B with radii AD, BC, respectively.

A B

C

D

P

E

Y

Z

T

U

V

The condition AD2 + BC2 = AB2 means ωA, ωB are orthogonal, so their intersection points

Y , Z lie on Γ. Let P be the midpoint of Y Z. Then P lies on AB, the radical axis of Ω, Γ, so

P is the common radical center of Ω, Γ, ωA, ωB.

Let the tangents to Ω at A, B meet at T , and let DP , CP meet Ω again at U , V . Since DU

is the radical axis of Ω, ωA, we have AT ‖ DU . Similarly BT ‖ CV , so ]APD = ]BAT =

]TBA = ]CPB. By monotonicity, P is the point described in the problem statement.

Finally we have
PA

PB
=

(
Y A

Y B

)2

=

(
AD

BC

)2

=

(
EA

EB

)2

,

so EP is the E-symmedian of 4EAB, which bisects CD.

Remark. This was my solution in-contest, and I believe it is pretty motivated. The four circles in

the problem are the most natural way to construct the diagram, and an in-scale diagram suggests

P lies on Y Z. The rest is not hard to prove.

Fourth solution, by inversion (Evan Chen) As noted above, the circle ωA centered at A with

radius AD is orthogonal to the circle ωB centered at B with radius BC. We let IA, IB denote

inversion with respect to ωA, ωB.

Let the radical axis of ωA, ωB intersect AB at P ; by design, P = IA(B) = IB(A). This

already implies that

]APD
IA= ]BDA = ]BCA

IB= ]CPB,

so by monotonicity, P is the point described in the problem statement.

Claim. The point K = IA(C) lies on ωB and DP . Similarly L = IB(D) lies on ωA and

CP .

Proof. Since ωA ⊥ ωB, it follows that K ∈ ωB. For K ∈ DP , note ABCD is cyclic, so

P = IA(B), K = IA(C), D = IA(D) are collinear.

Finally since C, L, P collinear, A is concyclic with K = IA(C), L = IA(L), B = IA(B), i.e.

AKLB is cyclic. Hence KL ‖ CD by Reim’s theorem, and PE bisects CD by Ceva’s theorem.
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§4 USAJMO 2019/4 (Ankan Bhattacharya, Zack Chroman, Anant
Mudgal)

Problem 4 (USAJMO 2019/4)

Let ABC be a triangle with ∠ABC obtuse. The A-excircle is a circle in the exterior of

4ABC that is tangent to side BC of the triangle and tangent to the extensions of the

other two sides. Let E, F be the feet of the altitudes from B and C to lines AC and AB,

respectively. Can line EF be tangent to the A-excircle?

It is not possible. Assume for contradiction line EF is tangent to the A-excircle.

First solution, by similarity Since ∠B = 90◦, we have A, E, C collinear in that order, and

also A, B, F collinear in that order.

Note the A-excircle is tangent to all three sides of 4AEF ; I contend it is its A-excircle as

well. Indeed, the A-excircle lies in the interior of ∠EAF , but it touches AC farther away from

A than E.

But 4ABC, 4AEF are inversely similar, and they share an A-exradius, so they are congru-

ent. Now AB = AE = AB cosA, so cosA = 1 and ∠A = 0◦, absurd.

Second solution, by length chasing Let the A-excircle touch AC, AB, EF at B′, S, C ′.

A

B
C

E

IA

B′

C′

S

F

If ρ denotes the semiperimeter, then

BC cosA = EF = ES + FS = EB′ + FC ′

= (ρ−AE) + (ρ−AF )

= AB +BC + CA− (AB + CA) cosA,

from which cosA = 1, absurd.
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§5 USAJMO 2019/5 (Ricky Liu)

Problem 5 (USAMO 2019/4)

Let n be a nonnegative integer. Determine the number of ways that one can choose (n+1)2

sets Si,j ⊆ {1, 2, . . . , 2n}, for integers 0 ≤ i ≤ n and 0 ≤ j ≤ n such that:

• for all 0 ≤ i, j ≤ n, the set Si,j has i+ j elements; and

• Si,j ⊆ Sk,l whenever 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ n.

The answer is (2n)! · 2n2
.

First solution, by direct computation Place the sets in an (n+ 1)× (n+ 1) grid shown below,

and select the blue sets S0,0, S0,1, . . ., S0,n, S1,n, . . ., Sn,n. Each admits exactly one more

element than the previous set in the sequence, so there are (2n)! ways to select the blue sets.
1357 12357 123457 1234578 12345678

135 1345 13457 134578 1345678

13 135 1357 13578 135678

1 15 157 1578 15678

∅ 5 57 578 5678


It remains to select the remaining sets. First note that the conditions given in the problem

statement are equivalent to Si,j ⊂ Si+1,j and Si,j ⊂ Si,j+1 for all 0 ≤ i, j ≤ n (by transitivity).

We determine the remaining sets in the following order: S1,n−1, S1,n−2, . . ., S1,0, S2,n−1,

S2,n−2, . . ., S2,0, and so on. When it comes to determine Si,j , we will have already chosen Si−1,j
and Si,j+1. [

1357 12357

135 1345

]
It is given Si,j \Si−1,j is a single-element subset of Si,j+1 \Si−1,j , which has cardinality 2; hence

we have 2 choices.

There were (2n)! ways to select the initially blue sets, and 2n
2

ways to select the remaining

sets. The conclusion follows.

Second solution, by bijection (Daniel Zhu) Arrange the sets into the obvious (n+1)×(n+1)

square grid. Here, we orient the grid diagonally so that S0,0 is on the bottom and Sn,n is on

the top. Label an internal edge with i if crossing an edge while going up adds the element i to

the set in the relevant square.
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5

1

4

5

4

6

3

4

6

4

6

2

1

1

4

6

5

3

3

3

3

4

6

2

∅

5

15

145

1

15

145

1456

15

135

1345

13456

135

1345

13456

123456

It follows from the Si,j ⊆ Sk,` condition that the set of edges with label i must follow a

path from the left end of the square to the right end of the square, so we can associate every

valid arrangement of sets with a partitioning of the internal edges into 2n paths, labeled 1, 2,

. . ., 2n, traveling from the left end of the square to the right end of the square. Indeed, this

correspondence is reversible, since given the system of labeled paths one can associate a square

with the set of all numbers k so that the path labeled with k passes below the square.

It suffices to show that there are 2n
2

ways to choose all the ways to partition the unlabeled

edges into 2n unlabeled paths. However, since every edge is utilized, this is equivalent to, for

each of the n2 internal vertices, choosing whether the two paths that pass through the vertex

end up crossing or not. Thus, we are done.
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§6 USAJMO 2019/6 (Yannick Yao)

Problem 6 (USAMO 2019/5)

Two rational numbers m
n and n

m are written on a blackboard, where m and n are relatively

prime integers. At any point, Evan may pick two of the numbers x and y written on the

board and write either their arithmetic mean x+y
2 or their harmonic mean 2xy

x+y on the board

as well. Find all pairs (m,n) such that Evan can write 1 on the board in finitely many

steps.

This is possible if and only if m + n is a power of 2. In what follows, let r = m
n , so we begin

with r and 1
r on the board.

Proof of sufficiency: Assume m+ n is a power of 2. It is possible to write 1 on the board

only by taking arithmetic means.

Claim 1. If x and y are on the board, then for all nonnegative integers u, v, t with

u+ v = 2t, it is possible to construct

u

2t
· x+

v

2t
· y.

Proof. The proof is by induction on t, with t = 0 given. Now suppose the hypothesis holds for

t; we will show it holds for t+ 1.

For u+ v = 2t+1, if 0 ∈ {u, v}, then we are already done. Otherwise, note that

u

2t+1
· x+

v

2t+1
· y =

1

2

[(
1

2t
· x+

1

2t
· y
)

+

(
u− 1

2t
· x+

v − 1

2t
· y
)]

,

which is constructable.

Finally take x = r, y = 1
r , u = n, v = m. We can construct

n

m+ n
· r +

m

m+ n
· 1

r
= 1.

Proof of necessity: Suppose p is an odd prime dividing m+ n. Then both numbers on the

board are equivalent to −1 (mod p). The main idea is in the following claim:

Claim 2. If x ≡ y ≡ −1 (mod p), then both their arithmetic mean and harmonic mean

are −1 (mod p).

Proof. This is fairly obvious: since 2 6≡ 0 (mod p) and x+ y ≡ −2 6≡ 0 (mod p), we can check

x+ y

2
≡ −2

2
≡ −1 (mod p) and

2xy

x+ y
≡ 2

1
x + 1

y

≡ 2

−2
≡ −1 (mod p),

and the claim follows.

If Evan can write 1 on the board, then 1 ≡ −1 (mod p), which is absurd.
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