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8§80 Problems

Problem 1. There are a + b bowls arranged in a row, numbered 1 through a + b, where a and
b are given positive integers. Initially, each of the first a bowls contains an apple, and each of
the last b bowls contains a pear.

A legal move consists of moving an apple from bowl ¢ to bowl ¢ + 1 and a pear from bowl j
to bowl j — 1, provided that the difference ¢ — j is even. We permit multiple fruits in the same
bowl at the same time. The goal is to end up with the first b bowls each containing a pear and
the last a bowls each containing an apple. Show that this is possible if and only if the product
ab is even.

Problem 2. Let Z be the set of all integers. Find all pairs of integers (a,b) for which there
exist functions f : Z — Z and g : Z — Z satisfying

flgx) =z +a and g(f(z)) =z +b

Problem 3. Let ABCD be a cyclic quadrilateral satisfying AD? + BC? = AB?. The diagonals
of ABCD intersect at E. Let P be a point on side AB satisfying Z/APD = /BPC. Show that
line PE bisects CD.

Problem 4. Let ABC be a triangle with ZABC obtuse. The A-excircle is a circle in the
exterior of AABC that is tangent to side BC' of the triangle and tangent to the extensions of
the other two sides. Let F, F' be the feet of the altitudes from B and C to lines AC and AB,
respectively. Can line EF' be tangent to the A-excircle?

Problem 5. Let n be a nonnegative integer. Determine the number of ways that one can
choose (n + 1)2 sets Sii €{1,2,...,2n}, for integers 0 < ¢ < n and 0 < j < n such that:

e for all 0 <4,j < n, the set S;; has i 4 j elements; and

e S;; €Sy whenever 0 <i<k<nand0<j<I<n.

Problem 6. Two rational numbers 7* and ;- are written on a blackboard, where m and n are

relatively prime integers. At any point, Evan may pick two of the numbers z and y written on
the board and write either their arithmetic mean ‘”# or their harmonic mean i% on the board

as well. Find all pairs (m,n) such that Evan can write 1 on the board in finitely many steps.
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§1 USAJMO 2019/1 (Jim Propp)

Problem 1 (USAJMO 2019/1)

There are a + b bowls arranged in a row, numbered 1 through a + b, where a and b are
given positive integers. Initially, each of the first a bowls contains an apple, and each of
the last b bowls contains a pear.

A legal move consists of moving an apple from bowl ¢ to bowl i+ 1 and a pear from bowl
j to bowl j — 1, provided that the difference ¢ — j is even. We permit multiple fruits in the
same bowl at the same time. The goal is to end up with the first b bowls each containing a
pear and the last a bowls each containing an apple. Show that this is possible if and only

if the product ab is even.

The problem consists of two parts:

Proof of sufficiency: Assume ab is even, and since the problem is symmetric under reflec-
tion, without loss of generality let a be even. I will show by induction on b that the goal is
always possible.

Consider b = 0 as the base case — there is nothing to show. Take the leftmost pear (in bowl
a-+ 1), and move it all the way to bowl 1; when the pear moves from bowl n to bowl n — 1, also
move the apple in bowl a + 2 — n.

Each apple moves exactly once, and so after this process, the leftmost bowl contains a pear,
the next a bowls each contain an apple, and the rightmost b — 1 bowls contain a pear. Then
apply the induction hypothesis on b — 1 to sort the remaining a + b — 1 apples.

Proof of necessity: Assume ab is odd. We can check that in total, ab moves occur. There
are two types of moves:

e Moving two fruit from odd-numbered bowls to even-numbered bowls.

e Moving two fruit from even-numbered bowls to odd-numbered bowls.

Since in both the beginning and the end of the process, each bowl contains a fruit, the two
types of moves occur equally often. This is absurd, since ab is odd.
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§2 USAJMO 2019/2 (Ankan Bhattacharya)

Problem 2 (USAJMO 2019/2)

Let Z be the set of all integers. Find all pairs of integers (a, b) for which there exist functions
f:7Z — 7 and g : Z — Z satisfying

flgl@) =z +a and g(f(z)=x+b

The answer is |a| = |b|. Here are possible constructions:

e For (a,a), take f(z) = x + 2a, g(z) =z — a.
e For (a,—a), take f(z) =2a —z, g(z) = a — z.
Evidently a =0 <= b =0, so in what follows, we assume a, b are nonzero.

Assume for contradiction |a| # |b|, and without loss of generality |a| > |b]. By the triple
involution trick,

flx+0)=flg(f(x)) = f(z) +a

Hence all residues of f(x) modulo |a| are covered by f(0), f(1), ..., f(|b] = 1); in particular, f
is not surjective modulo |a|. This is absurd, since f(g(z)) is clearly surjective.
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§3 USAJMO 2019/3 (Ankan Bhattacharya)

Problem 3 (USAMO 2019/2)

Let ABCD be a cyclic quadrilateral satisfying AD? + BC? = AB?. The diagonals of
ABCD intersect at E. Let P be a point on side AB satisfying ZAPD = /BPC. Show
that line PE bisects CD.

First solution, by symmedians There is a point P on side AB with AP = AD?/AB and
BP = BC?/AB. We have

PA  (AD\? [EA\’

7o~ (3c) = (22)

since AAED ~ ABEC. Then EP is the E-symmedian of AEAB, so EP bisects CD.

By monotonicity it remains to check ZAPD = /BPC. Since AP - AB = AD?  we have
ANAPD ~ ANADB, and analogously ABPC ~ ABCA. Hence {APD = {BDA = {BCA =
£CPB, end proof.

Second (elementary) solution, from official solutions packet As before, construct P so that
AP-AB = AD? and BP - BA = BC?. Then AAPD ~ AADB, ABPC ~ ABCA, so

0 := LAPD = {BDA = {BCA = LCPB.

The task is to show PFE bisects CD.

Let K =ACNPD,L=BDnPC.

I Claim 1. APLD and BPKC are cyclic.
Proof. These follow from {LDA =60 = {LPA and {BCK = 0 = £ BPK respectively. O
| Claim 2. AKLB is cyclic.

Proof. We have {AKB = {CKB = L{CPB = 6 and similarly LALB = 0. O

By Reim’s theorem on (ABCD), (AKLB), we have KL | CD. If M = PE N CD, then
MC = MD by Ceva’s theorem on APCD.
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Third solution, by radical axes Let {2 be the circumcircle of ABCD, let I" be the circle with
diameter AB, and let w4, wp be the circles centered at A, B with radii AD, BC, respectively.

The condition AD? 4+ BCO? = AB? means w4, wp are orthogonal, so their intersection points
Y, Z lie on I'. Let P be the midpoint of YZ. Then P lies on AB, the radical axis of Q, I, so
P is the common radical center of Q, I', wa, wp.

Let the tangents to © at A, B meet at T, and let DP, CP meet € again at U, V. Since DU
is the radical axis of 2, wa, we have AT || DU. Similarly BT || CV, so £{APD = {BAT =
£TBA = LCPB. By monotonicity, P is the point described in the problem statement.

Finally we have
PA_ (YA (AD\*_ (EA\’
PB \YB) \BC) \EB)’
so EP is the E-symmedian of AEAB, which bisects CD.

Remark. This was my solution in-contest, and I believe it is pretty motivated. The four circles in
the problem are the most natural way to construct the diagram, and an in-scale diagram suggests
P lies on YZ. The rest is not hard to prove.

Fourth solution, by inversion (Evan Chen) As noted above, the circle w4 centered at A with
radius AD is orthogonal to the circle wp centered at B with radius BC. We let 14, Ip denote
inversion with respect to w4, wpg.
Let the radical axis of wa, wp intersect AB at P; by design, P = 14(B) = Ig(A). This
already implies that
LAPD ™ (BDA = {BCA £ LCPB,

so by monotonicity, P is the point described in the problem statement.

Claim. The point K = I4(C) lies on wp and DP. Similarly L = Iz(D) lies on w4 and
CP.

Proof. Since wa 1 wpg, it follows that K € wp. For K € DP, note ABCD is cyclic, so
P=14(B), K =14(C), D =14(D) are collinear. O

Finally since C, L, P collinear, A is concyclic with K = I4(C), L = I4(L), B =14(B), i..
AKLB is cyclic. Hence KL || CD by Reim’s theorem, and PE bisects C'D by Ceva’s theorem.
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8§84 USAJMO 2019/4 (Ankan Bhattacharya, Zack Chroman, Anant
Mudgal)

Problem 4 (USAJMO 2019/4)

Let ABC be a triangle with ZABC obtuse. The A-excircle is a circle in the exterior of
ANABC that is tangent to side BC' of the triangle and tangent to the extensions of the
other two sides. Let E, F' be the feet of the altitudes from B and C to lines AC and AB,
respectively. Can line EF' be tangent to the A-excircle?

It is not possible. Assume for contradiction line E'F' is tangent to the A-excircle.

First solution, by similarity Since /B = 90°, we have A, E, C collinear in that order, and
also A, B, F collinear in that order.

Note the A-excircle is tangent to all three sides of AAEF; I contend it is its A-excircle as
well. Indeed, the A-excircle lies in the interior of ZEAF, but it touches AC farther away from
A than F.

But AABC, AAEF are inversely similar, and they share an A-exradius, so they are congru-
ent. Now AB=AFE = ABcos A, so cosA =1 and ZA = 0°, absurd.

Second solution, by length chasing Let the A-excircle touch AC, AB, EF at B', S, C".

If p denotes the semiperimeter, then

BCcosA=FEF =FES+FS=EB + FC’
— (p— AB) + (p— AF)
=AB+ BC +CA — (AB+ CA)cos A,

from which cos A = 1, absurd.
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§5 USAJMO 2019/5 (Ricky Liu)

Problem 5 (USAMO 2019/4)

Let n be a nonnegative integer. Determine the number of ways that one can choose (n+1)?
sets S;; € {1,2,...,2n}, for integers 0 <i < n and 0 < j < n such that:

e for all 0 <4,j < n, the set S;; has i 4 j elements; and

e S;j €Sy whenever 0 <i<k<nand0<j<I<n.

The answer is (2n)! - 2",

First solution, by direct computation Place the sets in an (n+1) x (n+1) grid shown below,
and select the blue sets So0, So1, ---, Sons Sim, ---, Snn. Each admits exactly one more
element than the previous set in the sequence, so there are (2n)! ways to select the blue sets.

(1357 12357 123457 1234578 12345678 ]
135 1345 13457 134578 1345678
13 135 1357 13578 135678
1 15 157 1578 15678
@ 5 57 578 5678

It remains to select the remaining sets. First note that the conditions given in the problem
statement are equivalent to S; ; C Siy1,; and S; ; C S; j41 for all 0 < 4,5 < n (by transitivity).

We determine the remaining sets in the following order: S1,-1, S1n—2, ---, S1,0, S2,n—1,
S2.n—2 - -+, S2,0, and so on. When it comes to determine S; ;, we will have already chosen S;_1 ;
and Si,j—l—l-

1357 12357
135 1345

It is given S; ; \ Si—1,; is a single-element subset of S; j11\ S;—1 ;, which has cardinality 2; hence
we have 2 choices.

There were (2n)! ways to select the initially blue sets, and on’ ways to select the remaining
sets. The conclusion follows.

Second solution, by bijection (Daniel Zhu) Arrange the sets into the obvious (n+1) x (n+1)
square grid. Here, we orient the grid diagonally so that Spo is on the bottom and S, , is on
the top. Label an internal edge with 7 if crossing an edge while going up adds the element ¢ to
the set in the relevant square.
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It follows from the S;; C S condition that the set of edges with label ¢ must follow a
path from the left end of the square to the right end of the square, so we can associate every
valid arrangement of sets with a partitioning of the internal edges into 2n paths, labeled 1, 2,
..., 2n, traveling from the left end of the square to the right end of the square. Indeed, this
correspondence is reversible, since given the system of labeled paths one can associate a square
with the set of all numbers &k so that the path labeled with k£ passes below the square.

It suffices to show that there are 27° ways to choose all the ways to partition the unlabeled
edges into 2n unlabeled paths. However, since every edge is utilized, this is equivalent to, for
each of the n? internal vertices, choosing whether the two paths that pass through the vertex
end up crossing or not. Thus, we are done.
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§6 USAJMO 2019/6 (Yannick Yao)

Problem 6 (USAMO 2019/5)

Two rational numbers 7* and ;- are written on a blackboard, where m and n are relatively

prime integers. At any point, Evan may pick two of the numbers  and y written on the
board and write either their arithmetic mean L;ry or their harmonic mean % on the board

as well. Find all pairs (m,n) such that Evan can write 1 on the board in finitely many
steps.

This is possible if and only if m + n is a power of 2. In what follows, let r = **, so we begin

with r and % on the board.

Proof of sufficiency: Assume m + n is a power of 2. It is possible to write 1 on the board
only by taking arithmetic means.

Claim 1. If x and y are on the board, then for all nonnegative integers u, v, t with
u+v = 2%, it is possible to construct

u (%

Proof. The proof is by induction on ¢, with ¢ = 0 given. Now suppose the hypothesis holds for
t; we will show it holds for ¢ + 1.
For u + v = 271 if 0 € {u, v}, then we are already done. Otherwise, note that

U v 1 1 1 u—1 v—1
g Cham VT [\ ) T\ Y

which is constructable. O

Finally take x = r, y = %, u =mn, v =m. We can construct

n m 1

r 4+ = 1.

m—i—n' m—i—n';

Proof of necessity: Suppose p is an odd prime dividing m 4+ n. Then both numbers on the
board are equivalent to —1 (mod p). The main idea is in the following claim:

Claim 2. If x = y = —1 (mod p), then both their arithmetic mean and harmonic mean
are —1 (mod p).

Proof. This is fairly obvious: since 2 # 0 (mod p) and z +y = —2 # 0 (mod p), we can check

-2 2 2 2
Tty =—=-1 (modp) and i =1——5=-——5=-1 (modp),
2 2 T+Yy > T

and the claim follows. O

If Evan can write 1 on the board, then 1 = —1 (mod p), which is absurd.
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