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8§80 Problems

Problem 1. Determine all composite integers n > 1 that satisfy the following property: if di,
ds, ..., di are all the posiitve divisors of n with 1 = d; < do < --- < d = n, then d; divides
dity1 + diqo for every 1 <i¢ <k — 2.

Problem 2. Let ABC be an acute-angled triangle with AB < AC. Let ) be the circumcircle
of AABC. Let S be the midpoint of the arc C'B of {2 containing A. The perpendicular from A
to BC meets BS at D and meets €2 again at E # A. The line through D parallel to BC meets
line BE at L. Denote the circumcircle of ABDL by w. Let w meet {2 again at P # B.

Prove that the line tangent to w at P meets line BS on the internal angle bisector of ZBAC'

Problem 3. For each integer k > 2, determine all infinite sequences of positive integers a1, a9,
... for which there exists a polynomial P of the form P(z) = 2* + ¢j_12* 1 + - + 12 + ¢,
where ¢, c1, ..., cp_1 are nonnegative integers, such that

P(an> = An4+10n42 " Opik
for every integer n > 1.

Problem 4. Let x1, xo, ..., To923 be pairwise different positive real numbers such that

1 1 1
ap = ($1+.’E2+"‘+!En) 33’71+l‘72++1’7
n

is an integer for every n = 1,2,...,2023. Prove that aspa3 > 3034.

Problem 5. Let n be a positive integer. A Japanese triangle consists of 1 + 2 + - -- + n circles
arranged in an equilateral triangular shape such that for each i = 1,2, ..., n, the i*" row contains
exactly ¢ circles, exactly ones of which is colored red. A ninja path in a Japanese triangle in a
sequence of n circles obtained by starting in the top row, then repeatedly going from a circle to
one of the two circles immediately below it and finishing in the bottom row. Here is an example
of a Japanese triangle with n = 6, along with a ninja path in the triangle containing two red
circles.

In terms of n, find the greatest k such that in each Japanese triangle there is a ninja path
containing at least k red circles.

Problem 6. Let ABC be an equilateral triangle. Let Ay, By, Cq be interior points of triangle
ABC such that BAl = AlC, CBl = BlA, ACl = ClB, and

/BAC + ZCB1A + LAC{B = 480°.

Lines BC1 and C By meet at Ao, lines CA; and ACt meet at By, and lines AB; and BA; meet
at Co. Prove that if triangle A1 B1C is scalene, then the three circumcircles of triangles AA; Ao,
BB1Bs, and CC;C5 all pass through three common points.
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§1 IMO 2023/1

Problem 1

Determine all composite integers n > 1 that satisfy the following property: if di, do, ...,
dy, are all the posiitve divisors of n with 1 = d; < dy < --- < d = n, then d; divides
diy1 + diqo for every 1 < i < k — 2.

The answer is prime powers, which clearly work. Now we show no other n work.

Of course di_o | d = n, and we are given di_o | dx—1 + d, 80 dg_o | dx—1. Since dsdi_o =
dadi_1 = n, we also have ds | d3. Hence if p = ds is the smallest prime divisor of n, then
d3 = p2.

Let ¢ > 4 be minimal so that d; is not a power of p. Then d; = p*~! for i < ¢ and dy = ¢
is another prime (if, for contradiction, n is not a power of p). We have dy_o | dg—1 + dy, or
p'3 | p2 4 ¢, or p~3 | q. Since £ — 3 > 1, this is absurd.



IMO 2023 Eric Shen (Last updated July 16, 2023)

§2 IMO 2023/2

Problem 2

Let ABC be an acute-angled triangle with AB < AC. Let €2 be the circumcircle of AABC.

Let S be the midpoint of the arc CB of  containing A. The perpendicular from A to BC

meets BS at D and meets Q again at F # A. The line through D parallel to BC meets

line BE at L. Denote the circumcircle of ABDL by w. Let w meet 2 again at P # B.
Prove that the line tangent to w at P meets line BS on the internal angle bisector of

/ZBAC.

Let K denote the midpoint of the other arc BC, let A’ be the antipode of A, and let the
tangent at P to w intersect Q at Y. The goal is to show DS, AK, PY concur.

S

Note that
e By converse Reim’s theorem on €2 and w, since LD || EA’ we have P, D, A’ collinear.

e By Reim’s theorem on Q and w, we have SY || PD.

But also AD || SK and {APD = £APA" = 90° = LKYS, so ADAP and ASKY are
homothetic. This implies the desired concurrence at the center of homothety.
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§3 IMO 2023/3 (MAS)

Problem 3

For each integer k£ > 2, determine all infinite sequences of positive integers a1, as, ... for
which there exists a polynomial P of the form P(z) = xF + c;_12* 1 +- - + 12+ ¢y, where
co, C1, - - -, Ck—1 are nonnegative integers, such that

P(an) = An+4+10n+2 * * " An+k

for every integer n > 1.

The answer is arithmetic progressions with nonnegative common difference d, which satisfy the
polynomial P(z) = (z+dy) - - - (x+d). We now show only arithmetic progressions work.

Claim 1. (a;) is nondecreasing.

Proof. Assume for contradiction a,, > a;mi1. Set m < m + 1, and while there exists n’ > n
with a,s < ay, set n < n’. This process must terminate, since positive integers cannot decrease
forever.

Now a,, has the property that it is less than or equal to every subsequent term of the sequence.
While a,—1 < an, set n < n — 1, which preserves the aforementioned property. This process
must terminate, since m < n and am, > am41.

Now we have an,—1 > an < any; for all ¢ > 1. But P is increasing, so a,—1 > a, implies

Qn - Optk—1 = P(anfl) > P(an) = Qn+41 """ Ontk,

Or 4y > apyg, contradiction. ]

Claim 2. (a;) is unbounded or constant.

Proof. Suppose (a;) is bounded and has a maximum a,,. Then
k _ k
A, < P(am) = Qm+1 " Am+tk < (o

so equality holds and thus P(x) = zF and a,, = Gm+1 =+ = Gm+k. Repeating with a4k as
our maximum gives that a,, = any; for all ¢ > 1.

Moreover, a’nfl_l = P(am-1) = Gm - Gpik—1 = aF, 80 ay_1 = ay,, and continuing back-
wards, we also deduce a; = a,, for all i < m. This proves the claim. O

We henceforth assume (a;) is unbounded.

I Claim 3. There is a constant D such that a,4+; — a, < D for each n and i < k.

Proof. For some massive P, we have P(z) < (z 4+ P)* for all z > 1 (by making each coefficient
larger). Then we have

(an + P)2 > P(an) R A a£+17

SO Gpt+1 — an < P. Then take D = kP. O



IMO 2023 Eric Shen (Last updated July 16, 2023)

Then there are finitely many possible values of the multiset

D, ={ant1 — any G2 — any ooy Ayl — An}y

so by infinite Pigeonhole there is an S = {di,...,d;} such that D,, = S for infinitely many n
and thus infinitely many values of a,; that is,

P(ay) = (an+dy) - (an + di)
for infinitely many values of a,, implying
P(z)=(x+di)-(x+dy)

as a polynomial identity.

Moreover, all of the other finitely many possible multisets each occurs finitely often, else by
the same argument, we would find P(z) equal to another polynomial, hence for some N, we
have D,, = S for n > N.

Let d; < --- < dj. Since (a;) is increasing, we have a,; = a, + d; for all n > N and i < k.
In particular,

an+d;i = anyi = (((an +d1) +dr) + -+ ) + di = ap +idy,
——

An+1

An+42

An4i—1

implying d; = id; for all ¢« < k. Let d = dy for convenience.
Now we have a,1+1 — ay, = d for all n > N. Then

P(aN_l) =aN - QN4k—1 = CLN(GN + d) ce (aN + (k — 1)d) = P(aN - d),

and since P is increasing on (—d, 00), we have ay_; = ay —d (and thus ay_; > 0). Continuing
downward, we conclude a,+1 — a, = d for all n, and we are done.
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§4 IMO 2023/4

Problem 4

Let 1, o, ..., x2023 be pairwise different positive real numbers such that

11 1
an =4[ (T1 + 22+ + 2n) aton ot
n

is an integer for every n = 1,2,...,2023. Prove that asges > 3034.

We prove:
Claim 1. a, —an—1 > 1 for all n > 2, with equality iff

n - 1 1

Tn—1

Proof. We have

) | 1
ap = (14 +xp) ;1—1----—1—;
n

5 1 1 1
=+ 1+ —(@1 4+ Frp) | —++
Tn 1 Tn—1

>ap + 1+ 2an-1 = (a1 + 1)

by AM-GM, and the equality case is clear. O
I Claim 2. a, —ap_9 > 3 for all n > 3.

Proof. We show equality for a,_1 — ap—o > 1 and a, — ap—1 > 1 cannot both hold. If so, we
would have

Tp-1 _ T1+- "+ Tp2 Ti1+-+Tp-1  Tn
Vip1 4472 4+ Lo

implying x,,_1 = z,,, contradiction. (The second equality above follows since summing numer-
ators and denominators of equal fractions preserves value.) O

Since a; = 1 it follows that agg1 > 3k + 1 for all k£ > 1.
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§5 IMO 2023/5

Problem 5
Let n be a positive integer. A Japanese triangle consists of 1+ 2+ - - - 4+ n circles arranged
in an equilateral triangular shape such that for each i = 1,2,...,n, the i*" row contains

exactly 7 circles, exactly ones of which is colored red. A ninja path in a Japanese triangle
in a sequence of n circles obtained by starting in the top row, then repeatedly going from a
circle to one of the two circles immediately below it and finishing in the bottom row. Here
is an example of a Japanese triangle with n = 6, along with a ninja path in the triangle
containing two red circles.

In terms of n, find the greatest k such that in each Japanese triangle there is a ninja path
containing at least k red circles.

The answer is |logyn| + 1. We impose a coordinate system in which (7,7) with 4,5 > 1
denotes the jth ball in the ith row.

Upper bound Let k = [logyn| + 1. We color red the cells (27 + 4,29 —4) for 0 < i < 2/ and
27 + i < n as shown.

In each of the k intervals of rows [2/,2/F!) (with the last interval possibly truncated), the
second coordinate of the red cells is decreasing, but in any ninja path the second coordinate is
nondecreasing, so any ninja path may obtain at most one red cell from each of these k intervals.

First proof of lower bound Let f(i,j) denote the maximum number of red cells on a path
from (0,0) to (i,7). Let

Sn = f(n,4)
j=0

denote the sum of f across the nth row.

Claim 1. For each n, we have

Sn+125n+1+ﬁﬂ.
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Proof. Let j be so that f(n,j) is maximal, so f(n,j) > 22. Then

o,
e For i < j, we have f(n+ 1,i) > f(n,i), by considering the path to (n + 1,%) that passes
through (n,4) and maximizes the number of red cells.

e For i > j, we have f(n+1,7) > f(n,i—1) by considering the path to (n+ 1,) that passes
through (n,7 — 1) and maximizes the number of red cells.

Moreover, there is a ¢ for which (n + 1,4) is red, in which case equality does not hold for the
respective bound given above.

Therefore,
Sur1 =1+ > fln+1i)+ Y. fln+1,i)

1<i<j j<i<n+1

>1+4 Y fni)+ Y fn,i)
i<j j<i<n

1
=1+ )+ Sz 1+ s,
as needed. ]

Claim 2. For each n = 2* + i with 0 < i < 2%, we have

Sy > nk + 2i+ 1.

Proof. The proof is induction on n, with base case S7 = 1. We note:

e In general, if S, > nk 4+ ¢+ 1, then the claim gives
Spy1 > (nk+2i+1)+1+(k+1)=Mn+Dk+2(0+1)+ 1.

o If n =21 _1and S, >nk+ (2! —1) = n(k + 1) then

Spy1>nk+1)+1+(k+1)=Mn+1)(k+1)+1. n
In particular there always exists j with
. Sn
n

as desired.

I Remark. It is also possible to prove Syr > k - 2% + 1 directly by induction on k. This suffices.

Second proof of lower bound (Yotam Amir) Let g(7, ) denote the maximum number of red
cells on a path from (7, j) to the nth row. Let

7
T, = Z 9f(n.4)
=0
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I Claim. T; > Tip1 for all k.

Proof. Let (i,j) be red. Then,

e For all j/ < j, we have f(i,5') > f(i +1,7)

e For all j/ > j, we have f(i,5') > f(i + 1,7+ 1).

o We have f(i,5) > 1+max{f(i+1,5), f(i+1,5+1)} and thus 2/:3) > 2f(+1.3) L of (+1.5+1),
The claim follows. 0
Then Tp > T;, = n+ 1, so f(0,0) > logy(n + 1), as needed.

Third proof of lower bound (Iran team leader) Add an empty (n + 1)th row, and draw the

unique binary tree with root (0,0) where every red circle has two children (directly below it)
and every other circle has one child.

Suppose each path from (0,0) to the (n + 1)th row in this tree contains at most k red circles.
Consider the map
{0,1}* — {cells in (n + 1)th row}

where each z € {0,1}* is a series of instructions on how to build a path from (0,0) to the
(n + 1)th row, so that at the ith red circle we encounter in the path, we go left if the ith bit is
0 and right if the ith bit is 1. (Once we reach the nth row, any unused bits are ignored.) Each
path may be represented in this form, so this is a surjection.

We therefore conclude 2F > n + 1.

10
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§6 IMO 2023/6 (USA)

Problem 6
Let ABC be an equilateral triangle. Let Ay, By, C1 be interior points of triangle ABC
such that BA1 = AlC, CBl = BlA, ACl = ClB, and

/BAC + ZCB1A+ LAC{B = 480°.

Lines BCy; and CB; meet at As, lines CA; and AC; meet at By, and lines AB; and
BA; meet at Cy. Prove that if triangle A;B;C1 is scalene, then the three circumcircles of
triangles AA;1As, BB1Bo, and CC1Cy all pass through three common points.

Note that for a point P in the interior of AABC with /PCB =r and Z/PBC = s, trig Ceva
gives that the barycentric coordinates of P are given by

_ sin(60° — ) sin(60° — s)
P (1 : >

sinr ' sin s

V3 1 V3 1
= 1:—cotr—f:—cot3—§ .

2 2 2

A circle through A has equation of the form xy + yz + zz = (x + y + 2)(vy + wz), and P lying
on this circle gives

(S ) (S 1) - () (o)

——cotr — =
2 2 2 ?(cotr + cot s)

_1+@ cotrcots —1

2 2 cotr+cots
1 3

= 2+\2[(:ot(r+s).

1 1
Al = (1:\/§cota—:\/§cota—>

3 1 3
and Ap = (1 : \2[ cot(60° — B) — = : —— cot(60° — ) — B

If we write the equation of (AAj1A43) as xy + yz + zoz = (v + y + 2)(vy + wz), the condition
Al c (AAlAg),

1 3
({ cot v — 2) (v+w) = 2 + xgcot(Qoz)

_1+§ cot?a — 1

2 2 2cota
(@cota—%) (%cota—i—@)

N cot a

:>v+w:f+£t :cos(60 —a)

2 2 cos o

11
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The condition As € (AA;1As) gives

(? cot(60° — 3) — 1) v+ <\/§ cot(60° — ) — 1) w = % + V3 cot(120° — 8 — )

2 2 2 2
1 3
=35 + \2[ cot(90° + )
_l—ﬁtana
22
5 3 1 V3 1{1
== icot(GOO—ﬁ)v—l—icot(GOo—7)w= *—itana + = f—|—£tana
2 2 2 2 513
_3_ V3,
—4 4 an «
3 1 30°
= cot(60° — B)v + cot(60° — y)w = [ — “tana = M.
2 2 COS ¥

Solving, we have

30°+ ° =
% — cot(60° — 7)%

cot(60° — B) — cot(60° — )
sin(60° — B)(cos(30° 4 «) sin(60° — ) — cos(60° — ) cos(60° — «))
cos a(cos(60° — ) sin(60° — ) — cos(60° — ) sin(60° — 3))
—sin(60° — 3) cos(120° — o — )  sin(60° — ) sin B
cosasin(ff — ) ~ cosasin(f — )

and thus
_ sin(60° — B)sin B~ sin(60° — ) siny

vy twz = cos asin(ff — ) cos asin(f — )

Now write the equation of (AA1A4s) as 0 = —(zy + yz + 22) + (¢ + ¥ + 2) (U + VoY + Wa2),
and similarly express (BB1Bz) and (CC1C2). (Of course ug = v = w, = 0.) To show these
three circles are coaxial, it will suffice to show the existence of A1, Ag, A3 such that

A - (AA1A) + Ao - (BB1B2) + A3 - (CC1C7) =0,
or rather so that

AM+X+A3=0

AMUg + Aoup + Azue =0
AVq + Aovp + A3v. = 0
AMwg + Aowp + Agwe = 0.

It is clear that the choice of A\; = cosasin(f — 7), and Ay and A3 symetrically satisfies the last
three equations, and we also have

A1 = cos asin B cosy — cos a cos [ siny

which cyclically sums to zero.
Now it is not hard to check that the three circles intersect, so we are done.
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