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IMO 2023 Eric Shen (Last updated July 16, 2023)

§0 Problems

Problem 1. Determine all composite integers n > 1 that satisfy the following property: if d1,

d2, . . ., dk are all the posiitve divisors of n with 1 = d1 < d2 < · · · < dk = n, then di divides

di+1 + di+2 for every 1 ≤ i ≤ k − 2.

Problem 2. Let ABC be an acute-angled triangle with AB < AC. Let Ω be the circumcircle

of △ABC. Let S be the midpoint of the arc CB of Ω containing A. The perpendicular from A

to BC meets BS at D and meets Ω again at E ̸= A. The line through D parallel to BC meets

line BE at L. Denote the circumcircle of △BDL by ω. Let ω meet Ω again at P ̸= B.

Prove that the line tangent to ω at P meets line BS on the internal angle bisector of ∠BAC.

Problem 3. For each integer k ≥ 2, determine all infinite sequences of positive integers a1, a2,

. . . for which there exists a polynomial P of the form P (x) = xk + ck−1x
k−1 + · · · + c1x + c0,

where c0, c1, . . ., ck−1 are nonnegative integers, such that

P (an) = an+1an+2 · · · an+k

for every integer n ≥ 1.

Problem 4. Let x1, x2, . . ., x2023 be pairwise different positive real numbers such that

an =

√
(x1 + x2 + · · ·+ xn)

(
1

x1
+

1

x2
+ · · ·+ 1

xn

)
is an integer for every n = 1, 2, . . . , 2023. Prove that a2023 ≥ 3034.

Problem 5. Let n be a positive integer. A Japanese triangle consists of 1 + 2+ · · ·+ n circles

arranged in an equilateral triangular shape such that for each i = 1, 2, . . . , n, the ith row contains

exactly i circles, exactly ones of which is colored red. A ninja path in a Japanese triangle in a

sequence of n circles obtained by starting in the top row, then repeatedly going from a circle to

one of the two circles immediately below it and finishing in the bottom row. Here is an example

of a Japanese triangle with n = 6, along with a ninja path in the triangle containing two red

circles.

In terms of n, find the greatest k such that in each Japanese triangle there is a ninja path

containing at least k red circles.

Problem 6. Let ABC be an equilateral triangle. Let A1, B1, C1 be interior points of triangle

ABC such that BA1 = A1C, CB1 = B1A, AC1 = C1B, and

∠BA1C + ∠CB1A+ ∠AC1B = 480◦.

Lines BC1 and CB1 meet at A2, lines CA1 and AC1 meet at B2, and lines AB1 and BA1 meet

at C2. Prove that if triangle A1B1C1 is scalene, then the three circumcircles of triangles AA1A2,

BB1B2, and CC1C2 all pass through three common points.
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§1 IMO 2023/1

Problem 1

Determine all composite integers n > 1 that satisfy the following property: if d1, d2, . . .,

dk are all the posiitve divisors of n with 1 = d1 < d2 < · · · < dk = n, then di divides

di+1 + di+2 for every 1 ≤ i ≤ k − 2.

The answer is prime powers, which clearly work. Now we show no other n work.

Of course dk−2 | dk = n, and we are given dk−2 | dk−1 + dk, so dk−2 | dk−1. Since d3dk−2 =

d2dk−1 = n, we also have d2 | d3. Hence if p = d2 is the smallest prime divisor of n, then

d3 = p2.

Let ℓ ≥ 4 be minimal so that dℓ is not a power of p. Then di = pi−1 for i ≤ ℓ and dℓ = q

is another prime (if, for contradiction, n is not a power of p). We have dℓ−2 | dℓ−1 + dℓ, or

pℓ−3 | pℓ−2 + q, or pℓ−3 | q. Since ℓ− 3 ≥ 1, this is absurd.
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§2 IMO 2023/2

Problem 2

Let ABC be an acute-angled triangle with AB < AC. Let Ω be the circumcircle of△ABC.

Let S be the midpoint of the arc CB of Ω containing A. The perpendicular from A to BC

meets BS at D and meets Ω again at E ̸= A. The line through D parallel to BC meets

line BE at L. Denote the circumcircle of △BDL by ω. Let ω meet Ω again at P ̸= B.

Prove that the line tangent to ω at P meets line BS on the internal angle bisector of

∠BAC.

Let K denote the midpoint of the other arc BC, let A′ be the antipode of A, and let the

tangent at P to ω intersect Ω at Y . The goal is to show DS, AK, PY concur.

A

B C

E

S

K

L

A′

P

D
Y

Note that

• By converse Reim’s theorem on Ω and ω, since LD ∥ EA′ we have P , D, A′ collinear.

• By Reim’s theorem on Ω and ω, we have SY ∥ PD.

But also AD ∥ SK and ∡APD = ∡APA′ = 90◦ = ∡KY S, so △DAP and △SKY are

homothetic. This implies the desired concurrence at the center of homothety.
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§3 IMO 2023/3 (MAS)

Problem 3

For each integer k ≥ 2, determine all infinite sequences of positive integers a1, a2, . . . for

which there exists a polynomial P of the form P (x) = xk+ ck−1x
k−1+ · · ·+ c1x+ c0, where

c0, c1, . . ., ck−1 are nonnegative integers, such that

P (an) = an+1an+2 · · · an+k

for every integer n ≥ 1.

The answer is arithmetic progressions with nonnegative common difference d, which satisfy the

polynomial P (x) = (x+d1) · · · (x+dk). We now show only arithmetic progressions work.

Claim 1. (ai) is nondecreasing.

Proof. Assume for contradiction am > am+1. Set n ← m + 1, and while there exists n′ > n

with an′ < an, set n← n′. This process must terminate, since positive integers cannot decrease

forever.

Now an has the property that it is less than or equal to every subsequent term of the sequence.

While an−1 ≤ an, set n ← n − 1, which preserves the aforementioned property. This process

must terminate, since m < n and am > am+1.

Now we have an−1 > an ≤ an+i for all i ≥ 1. But P is increasing, so an−1 > an implies

an · · · an+k−1 = P (an−1) > P (an) = an+1 · · · an+k,

or an > an+k, contradiction.

Claim 2. (ai) is unbounded or constant.

Proof. Suppose (ai) is bounded and has a maximum am. Then

akm ≤ P (am) = am+1 · · · am+k ≤ akm,

so equality holds and thus P (x) ≡ xk and am = am+1 = · · · = am+k. Repeating with am+k as

our maximum gives that am = am+i for all i ≥ 1.

Moreover, akm−1 = P (am−1) = am · · · am+k−1 = akm, so am−1 = am, and continuing back-

wards, we also deduce ai = am for all i < m. This proves the claim.

We henceforth assume (ai) is unbounded.

Claim 3. There is a constant D such that an+i − an ≤ D for each n and i ≤ k.

Proof. For some massive P , we have P (x) ≤ (x+ P )k for all x ≥ 1 (by making each coefficient

larger). Then we have

(an + P )2 ≥ P (an) = an+1 · · · an+k ≥ akn+1,

so an+1 − an ≤ P . Then take D = kP .
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Then there are finitely many possible values of the multiset

Dn = {an+1 − an, an+2 − an, . . . , an+k − an},

so by infinite Pigeonhole there is an S = {d1, . . . , dk} such that Dn = S for infinitely many n

and thus infinitely many values of an; that is,

P (an) = (an + d1) · · · (an + dk)

for infinitely many values of an, implying

P (x) = (x+ d1) · · · (x+ dk)

as a polynomial identity.

Moreover, all of the other finitely many possible multisets each occurs finitely often, else by

the same argument, we would find P (x) equal to another polynomial, hence for some N , we

have Dn = S for n ≥ N .

Let d1 ≤ · · · ≤ dk. Since (ai) is increasing, we have an+i = an + di for all n ≥ N and i ≤ k.

In particular,

an + di = an+i = (((an + d1)︸ ︷︷ ︸
an+1

+ d1)

︸ ︷︷ ︸
an+2

+ · · · )

︸ ︷︷ ︸
an+i−1

+ d1 = an + id1,

implying di = id1 for all i ≤ k. Let d = d1 for convenience.

Now we have an+1 − an = d for all n ≥ N . Then

P (aN−1) = aN · · · aN+k−1 = aN (aN + d) · · · (aN + (k − 1)d) = P (aN − d),

and since P is increasing on (−d,∞), we have aN−1 = aN −d (and thus aN−1 > 0). Continuing

downward, we conclude an+1 − an = d for all n, and we are done.
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§4 IMO 2023/4

Problem 4

Let x1, x2, . . ., x2023 be pairwise different positive real numbers such that

an =

√
(x1 + x2 + · · ·+ xn)

(
1

x1
+

1

x2
+ · · ·+ 1

xn

)
is an integer for every n = 1, 2, . . . , 2023. Prove that a2023 ≥ 3034.

We prove:

Claim 1. an − an−1 ≥ 1 for all n ≥ 2, with equality iff

x2n =
x1 + · · ·+ xn−1
1
x1

+ · · ·+ 1
xn−1

.

Proof. We have

a2n = (x1 + · · ·+ xn)

(
1

x1
+ · · ·+ 1

xn

)
= a2n−1 + 1 +

1

xn
(x1 + · · ·+ xn−1) + xn

(
1

x1
+ · · ·+ 1

xn−1

)
≥ a2n−1 + 1 + 2an−1 = (an−1 + 1)2

by AM-GM, and the equality case is clear.

Claim 2. an − an−2 ≥ 3 for all n ≥ 3.

Proof. We show equality for an−1 − an−2 ≥ 1 and an − an−1 ≥ 1 cannot both hold. If so, we

would have
xn−1

1/xn−1
=

x1 + · · ·+ xn−2
1
x1

+ · · ·+ 1
xn−2

=
x1 + · · ·+ xn−1
1
x1

+ · · ·+ 1
xn−1

=
xn

1/xn
,

implying xn−1 = xn, contradiction. (The second equality above follows since summing numer-

ators and denominators of equal fractions preserves value.)

Since a1 = 1 it follows that a2k+1 ≥ 3k + 1 for all k ≥ 1.
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§5 IMO 2023/5

Problem 5

Let n be a positive integer. A Japanese triangle consists of 1 + 2+ · · ·+ n circles arranged

in an equilateral triangular shape such that for each i = 1, 2, . . . , n, the ith row contains

exactly i circles, exactly ones of which is colored red. A ninja path in a Japanese triangle

in a sequence of n circles obtained by starting in the top row, then repeatedly going from a

circle to one of the two circles immediately below it and finishing in the bottom row. Here

is an example of a Japanese triangle with n = 6, along with a ninja path in the triangle

containing two red circles.

In terms of n, find the greatest k such that in each Japanese triangle there is a ninja path

containing at least k red circles.

The answer is ⌊log2 n⌋ + 1. We impose a coordinate system in which (i, j) with i, j ≥ 1

denotes the jth ball in the ith row.

Upper bound Let k = ⌊log2 n⌋ + 1. We color red the cells (2j + i, 2j − i) for 0 ≤ i < 2j and

2j + i ≤ n as shown.

In each of the k intervals of rows [2j , 2j+1) (with the last interval possibly truncated), the

second coordinate of the red cells is decreasing, but in any ninja path the second coordinate is

nondecreasing, so any ninja path may obtain at most one red cell from each of these k intervals.

First proof of lower bound Let f(i, j) denote the maximum number of red cells on a path

from (0, 0) to (i, j). Let

Sn =
i∑

j=0

f(n, j)

denote the sum of f across the nth row.

Claim 1. For each n, we have

Sn+1 ≥ Sn + 1 +

⌈
Sn

n

⌉
.
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Proof. Let j be so that f(n, j) is maximal, so f(n, j) ≥ Sn
n . Then

• For i ≤ j, we have f(n + 1, i) ≥ f(n, i), by considering the path to (n + 1, i) that passes

through (n, i) and maximizes the number of red cells.

• For i > j, we have f(n+1, i) ≥ f(n, i−1) by considering the path to (n+1, i) that passes

through (n, i− 1) and maximizes the number of red cells.

Moreover, there is a i for which (n + 1, i) is red, in which case equality does not hold for the

respective bound given above.

Therefore,

Sn+1 ≥ 1 +
∑

1≤i≤j

f(n+ 1, i) +
∑

j<i≤n+1

f(n+ 1, i)

≥ 1 +
∑
i≤j

f(n, i) +
∑

j≤i≤n

f(n, i)

= 1 + f(n, j) + Sn ≥ 1 +
n+ 1

n
· Sn,

as needed.

Claim 2. For each n = 2k + i with 0 ≤ i < 2k, we have

Sn ≥ nk + 2i+ 1.

Proof. The proof is induction on n, with base case S1 = 1. We note:

• In general, if Sn ≥ nk + i+ 1, then the claim gives

Sn+1 ≥ (nk + 2i+ 1) + 1 + (k + 1) = (n+ 1)k + 2(i+ 1) + 1.

• If n = 2k+1 − 1 and Sn ≥ nk + (2k+1 − 1) = n(k + 1) then

Sn+1 ≥ n(k + 1) + 1 + (k + 1) = (n+ 1)(k + 1) + 1.

In particular there always exists j with

f(n, j) ≥
⌈
Sn

n

⌉
≥ k + 1,

as desired.

Remark. It is also possible to prove S2k ≥ k · 2k + 1 directly by induction on k. This suffices.

Second proof of lower bound (Yotam Amir) Let g(i, j) denote the maximum number of red

cells on a path from (i, j) to the nth row. Let

Tn =

i∑
j=0

2f(n,j).
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Claim. Ti ≥ Ti+1 for all k.

Proof. Let (i, j) be red. Then,

• For all j′ < j, we have f(i, j′) ≥ f(i+ 1, j′)

• For all j′ > j, we have f(i, j′) ≥ f(i+ 1, j′ + 1).

• We have f(i, j) ≥ 1+max{f(i+1, j), f(i+1, j+1)} and thus 2f(i,j) ≥ 2f(i+1,j)+2f(i+1,j+1).

The claim follows.

Then T0 ≥ Tn = n+ 1, so f(0, 0) ≥ log2(n+ 1), as needed.

Third proof of lower bound (Iran team leader) Add an empty (n+ 1)th row, and draw the

unique binary tree with root (0, 0) where every red circle has two children (directly below it)

and every other circle has one child.

Suppose each path from (0, 0) to the (n+ 1)th row in this tree contains at most k red circles.

Consider the map

{0, 1}k → {cells in (n+ 1)th row}

where each x ∈ {0, 1}k is a series of instructions on how to build a path from (0, 0) to the

(n+ 1)th row, so that at the ith red circle we encounter in the path, we go left if the ith bit is

0 and right if the ith bit is 1. (Once we reach the nth row, any unused bits are ignored.) Each

path may be represented in this form, so this is a surjection.

We therefore conclude 2k ≥ n+ 1.
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§6 IMO 2023/6 (USA)

Problem 6

Let ABC be an equilateral triangle. Let A1, B1, C1 be interior points of triangle ABC

such that BA1 = A1C, CB1 = B1A, AC1 = C1B, and

∠BA1C + ∠CB1A+ ∠AC1B = 480◦.

Lines BC1 and CB1 meet at A2, lines CA1 and AC1 meet at B2, and lines AB1 and

BA1 meet at C2. Prove that if triangle A1B1C1 is scalene, then the three circumcircles of

triangles AA1A2, BB1B2, and CC1C2 all pass through three common points.

Note that for a point P in the interior of △ABC with ∠PCB = r and ∠PBC = s, trig Ceva

gives that the barycentric coordinates of P are given by

P =

(
1 :

sin(60◦ − r)

sin r
:
sin(60◦ − s)

sin s

)
=

(
1 :

√
3

2
cot r − 1

2
:

√
3

2
cot s− 1

2

)
.

A circle through A has equation of the form xy + yz + zx = (x+ y + z)(vy +wz), and P lying

on this circle gives(√
3

2
cot r − 1

2

)
v +

(√
3

2
cot s− 1

2

)
w =

(√
3
2 cot r + 1

2

)(√
3
2 cot s+ 1

2

)
− 1

√
3
2 (cot r + cot s)

=
1

2
+

√
3

2
· cot r cot s− 1

cot r + cot s

=
1

2
+

√
3

2
cot(r + s).

Let α = ∠A1BC and define β and γ similarly, so we are given α+β+ γ = 30◦. Now we have

A1 =

(
1 :

√
3

2
cotα− 1

2
:

√
3

2
cotα− 1

2

)

and A2 =

(
1 :

√
3

2
cot(60◦ − β)− 1

2
:

√
3

2
cot(60◦ − γ)− 1

2

)

If we write the equation of (AA1A2) as xy + yz + zx = (x + y + z)(vy + wz), the condition

A1 ∈ (AA1A2), (√
3

2
cotα− 1

2

)
(v + w) =

1

2
+

√
3

2
cot(2α)

=
1

2
+

√
3

2
· cot

2 α− 1

2 cotα

=

(√
3
2 cotα− 1

2

)
(12 cotα+

√
3
2 )

cotα

=⇒ v + w =
1

2
+

√
3

2
tanα =

cos(60◦ − α)

cosα
.
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The condition A2 ∈ (AA1A2) gives(√
3

2
cot(60◦ − β)− 1

2

)
v +

(√
3

2
cot(60◦ − γ)− 1

2

)
w =

1

2
+

√
3

2
cot(120◦ − β − γ)

=
1

2
+

√
3

2
cot(90◦ + α)

=
1

2
−
√
3

2
tanα

=⇒
√
3

2
cot(60◦ − β)v +

√
3

2
cot(60◦ − γ)w =

(
1

2
−
√
3

2
tanα

)
+

1

2

(
1

2
+

√
3

2
tanα

)

=
3

4
−
√
3

4
tanα

=⇒ cot(60◦ − β)v + cot(60◦ − γ)w =

√
3

2
− 1

2
tanα =

cos(30◦ + α)

cosα
.

Solving, we have

v =
cos(30◦+α)

cosα − cot(60◦ − γ) cos(60
◦−α)

cosα

cot(60◦ − β)− cot(60◦ − γ)

=
sin(60◦ − β)(cos(30◦ + α) sin(60◦ − γ)− cos(60◦ − γ) cos(60◦ − α))

cosα(cos(60◦ − β) sin(60◦ − γ)− cos(60◦ − γ) sin(60◦ − β))

=
− sin(60◦ − β) cos(120◦ − α− γ)

cosα sin(β − γ)
=

sin(60◦ − β) sinβ

cosα sin(β − γ)

and thus

vy + wz =
sin(60◦ − β) sinβ

cosα sin(β − γ)
y − sin(60◦ − γ) sin γ

cosα sin(β − γ)
z.

Now write the equation of (AA1A2) as 0 = −(xy + yz + zx) + (x+ y + z)(uax+ vay +waz),

and similarly express (BB1B2) and (CC1C2). (Of course ua = vb = wc = 0.) To show these

three circles are coaxial, it will suffice to show the existence of λ1, λ2, λ3 such that

λ1 · (AA1A2) + λ2 · (BB1B2) + λ3 · (CC1C2) = 0,

or rather so that

λ1 + λ2 + λ3 = 0

λ1ua + λ2ub + λ3uc = 0

λ1va + λ2vb + λ3vc = 0

λ1wa + λ2wb + λ3wc = 0.

It is clear that the choice of λ1 = cosα sin(β − γ), and λ2 and λ3 symetrically satisfies the last

three equations, and we also have

λ1 = cosα sinβ cos γ − cosα cosβ sin γ

which cyclically sums to zero.

Now it is not hard to check that the three circles intersect, so we are done.
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