Contents

0 Problems

—

IMO 2019/1 (SAF)
2 IMO 2019/2 (UKR)
3 IMO 2019/3 (HRV)
4 IMO 2019/4 (SLV)
5 IMO 2019/5 (USA)

6 IMO 2019/6 (IND)

IMO 2019

Compiled by Eric Shen

Last updated April 29, 2020



IMO 2019 Eric Shen (Last updated April 29, 2020)

8§80 Problems

Problem 1. Determine all functions f : Z — Z such that for all integers a and b,

f(2a) +2f(b) = f(f(a+b)).

Problem 2. In triangle ABC, point A; lies on side BC' and point Bj lies on side AC. Let P
and @ be points on segments AA; and BBj, respectively, such that PQ is parallel to AB. Let
P; be a point on line PB1, such that B lies strictly between P and Py, and ZPP,C = /ZBAC.
Similarly, let @)1 be a point on line QA;, such that A; lies strictly between () and @1, and
/0Q1Q = ZCBA.

Prove that points P, QQ, P, and ()1 are concyclic.

Problem 3. A social network has 2019 users, some pairs of whom are friends. Whenever user
A is friends with user B, user B is also friends with user A. Events of the following kind may
happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and C
are not friends, change their friendship statuses such that B and C' are now friends,
but A is no longer friends with B, and no longer friends with C'. All other friendship
statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that
there exists a sequence of such events after which each user is friends with at most one other
user.

Problem 4. Find all pairs (k,n) of positive integers such that
El= (2" —1)(2" —2)--- (2" — 2" 1),

Problem 5. The Bank of Bath issues coins with an H on one side and a T on the other. Harry
has n of these coins arranged in a line from left to right. He repeatedly performs the following
operation: if there are exactly & > 0 coins showing H, then he turns over the k"™ coin from
the left; otherwise, all coins show 7' and he stops. For example, if n = 3 the process starting
with the configuration THT would be THT — HHT — HTT — TTT, which stops after three
operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration C, let L(C') be the number of operations before Harry stops.
For example, L(T'HT') = 3 and L(TTT) = 0. Determine the average value of L(C) over
all 2™ possible initial configurations C.

Problem 6. Let I be the incenter of acute triangle ABC with AB # AC. The incircle w of
NABC is tangent to sides BC', CA, and AB at D, E, and F, respectively. The line through D
perpendicular to EF meets w at R. Line AR meets w again at P. The circumcircles of triangles
PCFE and PBF meet again at Q).

Prove that lines DI and P(Q meet on the line through A perpendicular to Al.
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§1 IMO 2019/1 (SAF)

Problem 1

Determine all functions f : Z — Z such that for all integers a and b,
f(2a) +2f(b) = f(f(a +D)).

The answer is f =0 and f(x) = 2x + ¢ for all ¢q. Let P(a,b) denote the assertion. Notice that

e P(1,z) yields f(2) +2f(x) = f(f(x + 1)) for all .
e P(0,x+1) yields f(0) 4+ 2f(x+1) = f(f(z+ 1)) for all .

Combining these, f(2) + 2f(xz) = f(0) + 2f(x + 1). Hence, f(0) = f(2) (mod 2) and for all z,

1@) - £(0)

fla+1) - f@) = T2

The right hand side is constant, so f is linear. Now, set f(x) = pr+q and ¢ = a+b. Substituting,

2pa + q + 2pb +2q = p(p(a +b) +q) +q
— 2p(a+b)+3¢=7p*(a+b)+pg+gq
<= 2q=p(c(p—2) +9q).

Let ¢ = 0; then, either ¢ =0 or p = 2.

e If ¢ =0, then 0 = ¢p(p — 2) for all ¢, implying p € {0, 2}.
o If p =2, then 2q = 2¢, so all such functions work.

It is easy to check that f =0 and f(z) = 2x + ¢ work, so we are done.
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§2 IMO 2019/2 (UKR)

Problem 2

In triangle ABC, point A; lies on side BC and point B lies on side AC. Let P and @ be
points on segments AA; and BB, respectively, such that PQ is parallel to AB. Let P; be
a point on line PBy, such that By lies strictly between P and P;, and /PP,C = ZBAC.
Similarly, let Q1 be a point on line QA;, such that A; lies strictly between @) and @1, and
/C01Q = ZCBA.

Prove that points P, @), P, and ()1 are concyclic.

We present two ways to solve this problem, but both are relatively simple. Thus we provide a
single diagram that encompasses both solutions.

First solution, by Reim’s Theorem Let PP; and QQ; intersect AB at P, and Q2 respectively,
and let AA; and BB intersect the circumcircle of AABC again at Ay and By respectively. By
the problem statement it is obvious that AP;C' P, and BQ1CQ2 are cyclic. We claim that P,
Q, As, B, P, Q1 are all concyclic.

Since PQ || AB, by Reim’s Theorem PQA3Bs is cyclic. Now B1P; - B1Py = AB; - CB; =
BBy - B1 By, whence PBs P, B is cyclic. However by Reim’s Theorem P; Bs P() is also cyclic, so
By lies on (PQA3Bs). Similarly Aj lies on (PQA2B>), so our claim has been proven. Thus P,
Q, P1, Q1 all lie on a circle, so we are done.

Second solution, by DDIT and Pappus’ Theorem Let P, = ABN PPy, Q2 = ABN QQ1,
T =PPNQQ,, K=CTNAB, and S = AQ N BP. By construction AP;CP, and BQ1CQ>
are cyclic, and by Pappus’ Theorem on APA; and BQ B, points S, C, T are collinear.

Applying DDIT on ABPQ from T, an involution swaps (T A, TP), (TB,TQ), (Tooag,TS),
where 00 4 is the point at infinity on AB. Projecting onto AB, an inversion at K swaps (4, P»)
and (B, Q2). It follows that KA- KP, = KB - KQ2, so TCSK is the radical axis of (AP;CP;)
and (BQICQQ) Now TP1 . TP2 = TQl . TQQ, SO P1P2Q2Q1 is CyChC.

Finally, by Reim’s Theorem, PP;Q1( is cyclic, and we are done.
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§3 IMO 2019/3 (HRV)

Problem 3

A social network has 2019 users, some pairs of whom are friends. Whenever user A is
friends with user B, user B is also friends with user A. Events of the following kind may
happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and
C are not friends, change their friendship statuses such that B and C' are now
friends, but A is no longer friends with B, and no longer friends with C. All
other friendship statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove
that there exists a sequence of such events after which each user is friends with at most

one other user.

This problem can be expressed in terms of a graph G of size 2019. Call the event described in
the problem a move on ABC, and call a connected component exhausted if it is impossible to
perform a move without disconnecting it.

Lemma

If a connected graph G is exhausted, then it is either a tree, a cycle, or a complete graph.

Proof. Assume that G is not a tree, a cycle, or a complete graph. We will show that there
exists a legal move. Since GG is not a tree, take the smallest cycle C. Then there are two cases
to consider.

First assume that C is not a triangle, and hence G contains no triangles. Take an edge ab,
with a € C' and b ¢ C. Now let ¢ € C be a neighbor of a. Hence we may move abe, as desired.

Now assume that C is a triangle, and let K be the maximal clique; by hypothesis K # G.
Then since G is connected, we can choose an edge ab with a € K and b ¢ K. Some vertex c of
K is not a neighbor of b, as otherwise b would be connected to every node in K and thus part
of K. Thus we may move abc. O

I Claim 1. @ is connected.

Proof. Assume for the sake of contradiction G has at least 2 connected components. By the
Pigeonhole Principle some connected component C' has size not exceeding 1009. But every node
has either 1009 or 1010 neighbors, a contradiction. O

I Claim 2. We can turn G into a tree.

Proof. Obviously G is not a tree, cycle, or complete graph, so by the lemma we can apply moves
until G transforms into an exhausted graph G’. But each move preserves the parity of the degree
of each node, and since some nodes have odd degree, G’ cannot be a cycle. Furthermore the
number of edges in G is strictly decreasing as we perform moves, and initially G is not connected,
so G’ cannot be a complete graph. Hence by the lemma, G’ is a tree. O

Now we can easily finish once G is a tree. In particular G is acyclic, and so it will forever be
acyclic. Perform arbitrary moves breaking G into smaller subtrees until each subtree has size
at most 2. Thus each node has degree at most 1, the end.
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§4 IMO 2019/4 (SLV)

Problem 4
Find all pairs (k,n) of positive integers such that

El=(2"—1)(2" —2)--- (2" — 2™ D).

The answer is (1,1) and (3,2). These clearly work, so we show that these are the only solutions.
First notice that

n—1 n—1 n
i=0 i=0 i=1
thus
2k &k n(n—1)
= — — | = N = ~ 7
k ; 5 > ; BJ va (k) o
Note that for all odd 4, 312 — 1, and furthermore by the Lifting the Exponents Lemma,
[n/2] ' [n/2]
vk = 3w (4 —1) = 3 (1—1—1/;;(2')) — [n/2] + vs ([n/3]1).
i=1 i=1

But clearly v5((3[n/2] + [n/2])!) > [n/2] + vs3(|n/2]!), so
vs(k!) < wvs(([n/2] + 3[n/2))!) < v3((2n)!),

whence 2n+2 > k > in(n — 1), or rather 0 > n? —5n — 4 and thus n < 1(5+ v/41) < 6. Then
we only need to check n < 5, which is an easy finite case check that yields the desired answer.
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§5 IMO 2019/5 (USA)

Problem 5

The Bank of Bath issues coins with an H on one side and a T" on the other. Harry has n
of these coins arranged in a line from left to right. He repeatedly performs the following
operation: if there are exactly k > 0 coins showing H, then he turns over the k' coin
from the left; otherwise, all coins show T and he stops. For example, if n = 3 the process
starting with the configuration THT would be THT — HHT — HTT — TT7T, which
stops after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of opera-
tions.

(b) For each initial configuration C, let L(C) be the number of operations before Harry
stops. For example, L(THT) = 3 and L(TTT) = 0. Determine the average value of
L(C) over all 2" possible initial configurations C.

The answer is %n(n + 1). Denote by a,, the answer. Consider a graph G,, of degree 2", where
each node represents one of the possible coin arrangements. For each node, draw a directed
edge to the state that must immediately follow.

We will show that (i) this graph is a tree, and (ii) a, = tn(n 4 1); this obviously solves the
problem. To this end, we use induction. Remark that the base case, n = 1, is trivial; in fact
the even easier case of n = 0 is a valid base case as well. G, is clearly unique, so we construct
G, in terms of G, _1.

Say that the root of Gy, is TTT...TT, and that for any node M, M denotes the node that
results from flipping over every coin, M" the node the results from reversing the ordering of
the coins, and MjMs the node that results from concatenating nodes M; and M. Also define
these operators on graphs, and apply them to each node of the graph. To construct G,, I claim
that the following procedure works:

e Construct graphs A = G,_1T and B=G,_ H.
e Draw an edge from the root of B (i.e. HHH...HH) to HHH...HT.

This is not hard to prove. For each node M in B, applying the operation to M will flip the coins
in position 1+ (n —1 — k) = n — k. Since the corresponding node in A has its first n — 1 coins
reversed, this operation is identical, so B is a valid subgraph. Finally, applying the operation
to HHH ... HH obviously yields HHH ... HT, so the claim has been proven.

Obviously G, is a tree, and furthermore note that HHH ... HH is at a distance of n from the
root; this is because from there, we simply sweep from the right to the left, flipping each bit.
Thus it takes n operations to reach the end of the process. Half of the tree retains its value of
L(C), and the other half has L(C') incremented my n. It follows that

1 1 1

This completes the proof.
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§6 IMO 2019/6 (IND)

Problem 6
Let I be the incenter of acute triangle ABC' with AB # AC. The incircle w of AABC
is tangent to sides BC, C A, and AB at D, F, and F, respectively. The line through D
perpendicular to EF meets w at R. Line AR meets w again at P. The circumcircles of
triangles PCE and PBF meet again at Q).

Prove that lines DI and P(Q meet on the line through A perpendicular to Al.

First solution, by spiral similarity

| Claim 1. BCIQ is cyclic.

Proof. Just notice that

£BQC = £BQP + £PQC = {BFP + {PEC
= {FEP + {PFE = {FPE = {FDFE = 4BIC,

as desired. ]
| Claim 2. ARFE ~ AIBC.

Proof. Again this is just angle chasing;:
ARFE = {RDE =90° — K{DEF = {FDI = {FBI = LIBC,

and similarly £ FER = £ BC1I, as desired. O
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Let Z = (ABC) N (AEF) be the Miquel point of BCEF, and let 1) be the spiral similarity
at Z sending FE to BC. By Claim 2, ¢ sends R to Q. Also let it send D to J, A to K, and P
to X. It is not hard to see that .J lies on (BIC) with I.J | BC and K is the midpoint of arc
BAC on the circumcircle. Furthermore, since (EF; PR) is harmonic, so is (BC; XI); but KB
and KC are tangent to (BIC), so X lies on both (BIC) and K.

Let S = DJ N AK. It suffices to show that S lies on line PQ.

I Claim 3. A, S, D, P, Z are concyclic.

Proof. By the spiral similarity at Z, points A, S, D, Z are already concyclic. But

{APD = LRPD = {RDB = £(AI, BC) = £(AS8,DJ) = LAZD,

as desired. O
I Claim 4. X, P, @, S are collinear.

Proof. By the spiral similarity at Z, £ ZPX = {ZAK = LZAS = LZPS, so X, P, S are
collinear. Finally, notice that A BQX = {BCX = {FEP = {BFP = {BQP. O

Claim 4 is exactly what we want to show, so we are done.

Second solution, by inversion Let  be the circumcircle of ABIC and D’ the antipode of D
on w. First we claim that @ € 2. This follows from

£BQC = £BQP + £PQC = {BFP + {PEC
= {FEP + {PFE = {FPE = {FDE = 4BIC.

Furthermore, the systems AAFE Uw and AKBC U Q are similar since KB and KC are
tangent to Q and L FAE = {BKC. Let KI intersect Q) again at X. Noting that IK is the
K-symmedian of AIBC', we have

ABQP = ABFP =AFRP =AFRA=4ABIK = {BIX = {BQX,

so X, P, Q are collinear. Let S = DI N AK. It suffices to show that S lies on line PX.

Invert about w, sending A, B, C to A’, B', C’, the midpoints of EF, FD, DE respectively.
Since BICX is harmonic, X is sent to the midpoint of B’C" (which also happens to be the
midpoint of DA’). Moreover S is sent to S’, the projection of A’ onto DD’. Tt is sufficient
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to show that PX'IS" is cyclic. From here on we omit the prime symbol from images of the
inversion for readability.

Since FRF P is harmonic, it is well-known that P lies on HAD'. Finally, P, X, I, S lie on
the nine-point circle of AADD’, so we are done.

Third solution, by the Iran Lemma Let 14 be the A-excenter, €2 the circumcircle of ABIC),
and let PQ and DI intersect w again at T and D™ respectively. Denote by D’ the reflection of
D over AI and M the midpoint of EF. Let K be the midpoint of arc BAC on the circumcircle,
and let Q' lie on Q such that 1Q’ L B'C’. Denote Bt = BQN EF and CtT = CQ N EF, and
let IBT and IC* intersect  again at B’ and C’ respectively.

K

C+

/
B R

| Claim 1. BCIQ is cyclic.

Proof. Just notice that

£BQC = {BQP + {PQC = {BFP + {PEC
— (FEP + {PFE = {FPE = {FDE = £BIC,

as desired. ]
Claim 2. BT lies on (CPQFE) and C™ lies on (BPQF).

Proof. A\CEBT = LAEF = LCIB = £CQB = £CQB™ and similarly £ BFCT = £BQC™.
O

10
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I Claim 3. B’ and C’ are the reflections of C' and B respectively across AT

Proof. By Reim’s Theorem on (BPQFC™) and Q, FC* || B'C. Then BC’ and B'C' are both
perpendicular to AI, and the desired result follows. O

I Claim 4. QIB*C™ is cyclic.
Proof. £QIBT = £QIB' = £QBB' = AQBF = £QCTF = £QC*TB™*. O
I Claim 5. 4@ bisects B'C".

Proof. By the Iran Lemma on AAB'C’, BT and C7 lie on (B'C"). Since Q is the Miquel point
of B'C'CT BT, this is just a well-known result applied to AIB’C": If H denotes the orthocenter
of AIB'C’, then @ lies on the circle with diameter TH (since H = B'C*t N C’'B*). But it is
well-known that 4 is the reflection of H over the midpoint N of B’C’. Thus N lies on QI 4, as
desired. O

Notice that
LIZB'C' = LI,CC' = LIA.CA = ABIA = ADFE,

so ANI2B'C' ~ ADFE. Since
LB'I,Q = {B'BQ = {FBQ = {FPQ = {FPT

but I4Q bisects B'C’, T lies on PQ.
By Brocard’s Theorem on DPT D", S = DD+ NPT lies on the polar of M, which is the line
through A perpendicular to AI. This completes the proof.

Fourth solution, by two inversions (Brandon Wang, Luke Robitaille, Michael Ren, Evan
Chen) Invert about w and then invert about P. It is not hard to check that this gives the
following problem.

Let PEF be a triangle and let the P-symmedian meet EF and (PEF) at K and
L respectively. Let D lie on EF with ZDPK = 90°, and let T be the foot from
K to DL. Denote by I the reflection of P about EF. Finally, let M and N be
the harmonic conjugates of P with respect to DE and DF respectively. Prove that
lines EM, FN, TI are concurrent

11
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Since DPW L is cyclic, {ZEP = AZLP = {WLP = AWDP = {EDP, so ZE is tangent to
(DPE); similarly, ZF is tangent to (DPF).

Note that AWTP is the orthic triangle of ADKL, so it is well-known that WD bisects
/PTK. However I is the reflection of P over WD, so W, T, I are collinear.

Finally, -1 = E(PM;DZ) = F(PN;DZ) = W(PI;DZ), so EM, FN, WI concur on PZ,
as desired.

Fourth solution, by linearity (Edward Wan) Let (BPE) and (CPF) intersect BC again at
B; and (1 respectively. We start with this familiar claim.

| Claim 1. ARFE ~ AIBC.

Proof. This is just angle chasing;:
ARFE = ARDE =90° — {DEF = {FDI = {FBI = LIBC,
and similarly L FER = £BC1, as desired. O

| Claim 2. DB, : DC; = AC : AB.

Proof. First LPB1C1 = {PB1B = {PFB = {PEF, so APBCy ~ APEF. But PERF is
harmonic, so
PB; PE RE IC sinjB

PCy  PF RF IB sinicC’

However

AB1PD = A{B\PF + AFPD = A{B1BF + {FED = {DBF + {FED
=ADIF + AFED =24{DFEF + AFED = LDFEF,

so ZB1PD =90° + 1B and ZC1PD = 90°  5C. Thus by the Ratio Lemma,

DBy  PBisin/BiPD singBcoszB sinB  AC
DC,  PCisin/CiPD sin%Ccos %C’ ~ sinC  AB’

as desired. O

12
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Now define functions fi, fo : R? = R by
fi(e) = Pow(e, (BI)) — Pow(e, (CI)),
f2(e) = Pow(e, (BPF)) — Pow(e, (CPFE)).

It is well-known that f; and fs are linear. Also let the external angle bisector of ZA intersect
BC at Y and DI at S. Tt suffices to show that f2(S) = 0.

Claim 3. For all points @ on AS, fi(e) = fa(e).

Proof. Clearly f1(A) = AB-AF — AC - AE = f»(A), so it suffices to show that f1(Y) = fa(Y).
But this is equivalent to

YB-YD-YC-YD=YB-YB;-YC-YC(j,

or rather YB-DB; = YC-DC,. However YB : YC = AB : AC by the Angle Bisector Theorem,
so our claim has been reduced to Claim 2. U

Finally S lies on DI, the radical axis of (BI) and (CTI). Hence f2(S) = f1(S) = 0, and we
are done.

Fifth solution, by elliptic curves (yaron235) Instead we prove the following generalization:

Let ABC be a triangle and let E and F be points on AC and AB respectively.
Let D be a point in the plane and let K be the intersection of the circumcircles
of ADEC and ADFB. Let S be the intersection point of DK and a line through
A and parallel to EF, and let P be the second intersection of the circumcircles of
AASD and AFED. Denote by @ the second intersection of the circumcircles of
APEC and APFB. Prove that S lies on PQ.

It is not hard to check that the problem is a special case of this generalization; the only work
that needs to be done is to prove this claim:

I Claim 1. In the language of the original problem, ASDP is cyclic.

Proof. Fortunately this is not hard. Just notice that
LAPD = {RPD = 90° + {EFD + {FED = £(AI, BC) = £ASD,
done. O

Now let’s prove the generalization. Work in CP?, and let I = (1:7:0) and J = (1 : —i : 0)
denote the two circular points at infinity, i.e. the two points at infinity common to every
circle. Let v be the locus of points X with the property that S lies on the radical axis of the
circumcircles of AX EC and AX FB. We only need to prove that P lies on this locus.

I Claim 2. « is an elliptic curve.
Proof. Indeed, if X moves with degree 1, then Y, the intersection of (XEC) and (XFB),

moves with degree 2 by homography. Thus the collinearity of points X, Y, S has degree 3, as
desired. O

13



IMO 2019 Eric Shen (Last updated April 29, 2020)

By construction, points S, D, K already lie on . Of course points B, F, C, E, I, J lie on
~ as well, since we can select arbitrary circles through two points. Also note that for all points
X in 7, the second intersection Y of (XEC) and (X FB) also lies on 7, so in the group of ,
X+Y+C+E+I14+J=X+Y+B+F+I1+J=0. In particular, C+ EF = B+ F, so
A = CFEN BF lies on 7. Also X, Y, S are collinear by definition, so X +Y + 5 = 0 and thus
C+E+I+J=B+F+1+J=S5. Moreover A, C, E are collinear, so A+ C + E =0 and
I+J=A+S. It follows that cogp, the point at infinity along EF, lies on 7.

Recall that we want to prove that P lies on 7. But (DEF) intersects v again at —(D + E +
F+1+J) and (ASD) intersects v again at —(A+ S+ D+ 1+ J). It is sufficient to show that
these are the same point. But copp = EF N AS lies on v, so E+ F = A+ S, and we are done.

14
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