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§0 Problems

Problem 1. Determine all functions f : Z→ Z such that for all integers a and b,

f(2a) + 2f(b) = f(f(a+ b)).

Problem 2. In triangle ABC, point A1 lies on side BC and point B1 lies on side AC. Let P

and Q be points on segments AA1 and BB1, respectively, such that PQ is parallel to AB. Let

P1 be a point on line PB1, such that B1 lies strictly between P and P1, and ∠PP1C = ∠BAC.

Similarly, let Q1 be a point on line QA1, such that A1 lies strictly between Q and Q1, and

∠CQ1Q = ∠CBA.

Prove that points P , Q, P1, and Q1 are concyclic.

Problem 3. A social network has 2019 users, some pairs of whom are friends. Whenever user

A is friends with user B, user B is also friends with user A. Events of the following kind may

happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and C

are not friends, change their friendship statuses such that B and C are now friends,

but A is no longer friends with B, and no longer friends with C. All other friendship

statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that

there exists a sequence of such events after which each user is friends with at most one other

user.

Problem 4. Find all pairs (k, n) of positive integers such that

k! = (2n − 1)(2n − 2) · · · (2n − 2n−1).

Problem 5. The Bank of Bath issues coins with an H on one side and a T on the other. Harry

has n of these coins arranged in a line from left to right. He repeatedly performs the following

operation: if there are exactly k > 0 coins showing H, then he turns over the kth coin from

the left; otherwise, all coins show T and he stops. For example, if n = 3 the process starting

with the configuration THT would be THT → HHT → HTT → TTT , which stops after three

operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration C, let L(C) be the number of operations before Harry stops.

For example, L(THT ) = 3 and L(TTT ) = 0. Determine the average value of L(C) over

all 2n possible initial configurations C.

Problem 6. Let I be the incenter of acute triangle ABC with AB 6= AC. The incircle ω of

4ABC is tangent to sides BC, CA, and AB at D, E, and F , respectively. The line through D

perpendicular to EF meets ω at R. Line AR meets ω again at P . The circumcircles of triangles

PCE and PBF meet again at Q.

Prove that lines DI and PQ meet on the line through A perpendicular to AI.
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§1 IMO 2019/1 (SAF)

Problem 1

Determine all functions f : Z→ Z such that for all integers a and b,

f(2a) + 2f(b) = f(f(a+ b)).

The answer is f ≡ 0 and f(x) = 2x+ q for all q. Let P (a, b) denote the assertion. Notice that

• P (1, x) yields f(2) + 2f(x) = f(f(x+ 1)) for all x.

• P (0, x+ 1) yields f(0) + 2f(x+ 1) = f(f(x+ 1)) for all x.

Combining these, f(2) + 2f(x) = f(0) + 2f(x+ 1). Hence, f(0) ≡ f(2) (mod 2) and for all x,

f(x+ 1)− f(x) =
f(2)− f(0)

2
.

The right hand side is constant, so f is linear. Now, set f(x) = px+q and c = a+b. Substituting,

2pa+ q + 2pb+ 2q = p(p(a+ b) + q) + q

⇐⇒ 2p(a+ b) + 3q = p2(a+ b) + pq + q

⇐⇒ 2q = p(c(p− 2) + q).

Let c = 0; then, either q = 0 or p = 2.

• If q = 0, then 0 = cp(p− 2) for all c, implying p ∈ {0, 2}.
• If p = 2, then 2q = 2q, so all such functions work.

It is easy to check that f ≡ 0 and f(x) = 2x+ q work, so we are done.
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§2 IMO 2019/2 (UKR)

Problem 2

In triangle ABC, point A1 lies on side BC and point B1 lies on side AC. Let P and Q be

points on segments AA1 and BB1, respectively, such that PQ is parallel to AB. Let P1 be

a point on line PB1, such that B1 lies strictly between P and P1, and ∠PP1C = ∠BAC.

Similarly, let Q1 be a point on line QA1, such that A1 lies strictly between Q and Q1, and

∠CQ1Q = ∠CBA.

Prove that points P , Q, P1, and Q1 are concyclic.

We present two ways to solve this problem, but both are relatively simple. Thus we provide a

single diagram that encompasses both solutions.

C

A B

A1

B1

P Q

P2 Q2

P1
Q1

T

S

K

A2

B2

First solution, by Reim’s Theorem Let PP1 and QQ1 intersect AB at P2 and Q2 respectively,

and let AA1 and BB1 intersect the circumcircle of 4ABC again at A2 and B2 respectively. By

the problem statement it is obvious that AP1CP2 and BQ1CQ2 are cyclic. We claim that P ,

Q, A2, B2, P1, Q1 are all concyclic.

Since PQ ‖ AB, by Reim’s Theorem PQA2B2 is cyclic. Now B1P1 · B1P2 = AB1 · CB1 =

BB1 ·B1B2, whence PB2P2B is cyclic. However by Reim’s Theorem P1B2PQ is also cyclic, so

B2 lies on (PQA2B2). Similarly A2 lies on (PQA2B2), so our claim has been proven. Thus P ,

Q, P1, Q1 all lie on a circle, so we are done.

Second solution, by DDIT and Pappus’ Theorem Let P2 = AB ∩ PP1, Q2 = AB ∩ QQ1,

T = PP1 ∩QQ1, K = CT ∩ AB, and S = AQ ∩ BP . By construction AP1CP2 and BQ1CQ2

are cyclic, and by Pappus’ Theorem on APA1 and BQB1, points S, C, T are collinear.

Applying DDIT on ABPQ from T , an involution swaps (TA, TP ), (TB, TQ), (T∞AB, TS),

where∞AB is the point at infinity on AB. Projecting onto AB, an inversion at K swaps (A,P2)

and (B,Q2). It follows that KA ·KP2 = KB ·KQ2, so TCSK is the radical axis of (AP1CP2)

and (BQ1CQ2). Now TP1 · TP2 = TQ1 · TQ2, so P1P2Q2Q1 is cyclic.

Finally, by Reim’s Theorem, PP1Q1Q is cyclic, and we are done.
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§3 IMO 2019/3 (HRV)

Problem 3

A social network has 2019 users, some pairs of whom are friends. Whenever user A is

friends with user B, user B is also friends with user A. Events of the following kind may

happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and

C are not friends, change their friendship statuses such that B and C are now

friends, but A is no longer friends with B, and no longer friends with C. All

other friendship statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove

that there exists a sequence of such events after which each user is friends with at most

one other user.

This problem can be expressed in terms of a graph G of size 2019. Call the event described in

the problem a move on ABC, and call a connected component exhausted if it is impossible to

perform a move without disconnecting it.

Lemma

If a connected graph G is exhausted, then it is either a tree, a cycle, or a complete graph.

Proof. Assume that G is not a tree, a cycle, or a complete graph. We will show that there

exists a legal move. Since G is not a tree, take the smallest cycle C. Then there are two cases

to consider.

First assume that C is not a triangle, and hence G contains no triangles. Take an edge ab,

with a ∈ C and b /∈ C. Now let c ∈ C be a neighbor of a. Hence we may move abc, as desired.

Now assume that C is a triangle, and let K be the maximal clique; by hypothesis K 6= G.

Then since G is connected, we can choose an edge ab with a ∈ K and b /∈ K. Some vertex c of

K is not a neighbor of b, as otherwise b would be connected to every node in K and thus part

of K. Thus we may move abc.

Claim 1. G is connected.

Proof. Assume for the sake of contradiction G has at least 2 connected components. By the

Pigeonhole Principle some connected component C has size not exceeding 1009. But every node

has either 1009 or 1010 neighbors, a contradiction.

Claim 2. We can turn G into a tree.

Proof. Obviously G is not a tree, cycle, or complete graph, so by the lemma we can apply moves

until G transforms into an exhausted graph G′. But each move preserves the parity of the degree

of each node, and since some nodes have odd degree, G′ cannot be a cycle. Furthermore the

number of edges in G is strictly decreasing as we perform moves, and initially G is not connected,

so G′ cannot be a complete graph. Hence by the lemma, G′ is a tree.

Now we can easily finish once G is a tree. In particular G is acyclic, and so it will forever be

acyclic. Perform arbitrary moves breaking G into smaller subtrees until each subtree has size

at most 2. Thus each node has degree at most 1, the end.
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§4 IMO 2019/4 (SLV)

Problem 4

Find all pairs (k, n) of positive integers such that

k! = (2n − 1)(2n − 2) · · · (2n − 2n−1).

The answer is (1, 1) and (3, 2). These clearly work, so we show that these are the only solutions.

First notice that

n−1∏
i=0

(
2n − 2i

)
=

n−1∏
i=0

2i
(
2n−i − 1

)
= 2n(n−1)/2

n∏
i=1

(
2i − 1

)
,

thus

k =

∞∑
i=1

k

2i
>
∞∑
i=1

⌊
k

2i

⌋
= ν2(k!) =

n(n− 1)

2
.

Note that for all odd i, 3 - 2i − 1, and furthermore by the Lifting the Exponents Lemma,

ν3(k!) =

bn/2c∑
i=1

ν3
(
4i − 1

)
=

bn/2c∑
i=1

(
1 + ν3(i)

)
= bn/2c+ ν3 (bn/3c!) .

But clearly ν3
(
(3bn/2c+ bn/2c)!

)
≥ bn/2c+ ν3(bn/2c!), so

ν3(k!) ≤ ν3
(
(bn/2c+ 3bn/2c)!

)
≤ ν3

(
(2n)!

)
,

whence 2n+ 2 ≥ k > 1
2n(n− 1), or rather 0 > n2 − 5n− 4 and thus n < 1

2(5 +
√

41) < 6. Then

we only need to check n ≤ 5, which is an easy finite case check that yields the desired answer.
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§5 IMO 2019/5 (USA)

Problem 5

The Bank of Bath issues coins with an H on one side and a T on the other. Harry has n

of these coins arranged in a line from left to right. He repeatedly performs the following

operation: if there are exactly k > 0 coins showing H, then he turns over the kth coin

from the left; otherwise, all coins show T and he stops. For example, if n = 3 the process

starting with the configuration THT would be THT → HHT → HTT → TTT , which

stops after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of opera-

tions.

(b) For each initial configuration C, let L(C) be the number of operations before Harry

stops. For example, L(THT ) = 3 and L(TTT ) = 0. Determine the average value of

L(C) over all 2n possible initial configurations C.

The answer is 1
4n(n + 1). Denote by an the answer. Consider a graph Gn of degree 2n, where

each node represents one of the possible coin arrangements. For each node, draw a directed

edge to the state that must immediately follow.

We will show that (i) this graph is a tree, and (ii) an = 1
4n(n+ 1); this obviously solves the

problem. To this end, we use induction. Remark that the base case, n = 1, is trivial; in fact

the even easier case of n = 0 is a valid base case as well. Gn is clearly unique, so we construct

Gn in terms of Gn−1.

Say that the root of Gn is TTT . . .TT, and that for any node M , M denotes the node that

results from flipping over every coin, M r the node the results from reversing the ordering of

the coins, and M1M2 the node that results from concatenating nodes M1 and M2. Also define

these operators on graphs, and apply them to each node of the graph. To construct Gn, I claim

that the following procedure works:

• Construct graphs A = Gn−1T and B = Gr
n−1H.

• Draw an edge from the root of B (i.e. HHH . . .HH) to HHH . . .HT.

This is not hard to prove. For each node M in B, applying the operation to M will flip the coins

in position 1 + (n− 1− k) = n− k. Since the corresponding node in A has its first n− 1 coins

reversed, this operation is identical, so B is a valid subgraph. Finally, applying the operation

to HHH . . .HH obviously yields HHH . . .HT, so the claim has been proven.

Obviously Gn is a tree, and furthermore note that HHH . . .HH is at a distance of n from the

root; this is because from there, we simply sweep from the right to the left, flipping each bit.

Thus it takes n operations to reach the end of the process. Half of the tree retains its value of

L(C), and the other half has L(C) incremented my n. It follows that

an = an−1 +
1

2
n =

1

2
(1 + 2 + · · ·+ n) =

1

4
n(n+ 1).

This completes the proof.
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§6 IMO 2019/6 (IND)

Problem 6

Let I be the incenter of acute triangle ABC with AB 6= AC. The incircle ω of 4ABC
is tangent to sides BC, CA, and AB at D, E, and F , respectively. The line through D

perpendicular to EF meets ω at R. Line AR meets ω again at P . The circumcircles of

triangles PCE and PBF meet again at Q.

Prove that lines DI and PQ meet on the line through A perpendicular to AI.

First solution, by spiral similarity

A

B C

K

I

IA

D

E

F

M

R

P

X

S

Q

J

Z

Claim 1. BCIQ is cyclic.

Proof. Just notice that

]BQC = ]BQP + ]PQC = ]BFP + ]PEC

= ]FEP + ]PFE = ]FPE = ]FDE = ]BIC,

as desired.

Claim 2. 4RFE ∼ 4IBC.

Proof. Again this is just angle chasing:

]RFE = ]RDE = 90◦ − ]DEF = ]FDI = ]FBI = ]IBC,

and similarly ]FER = ]BCI, as desired.
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Let Z = (ABC) ∩ (AEF ) be the Miquel point of BCEF , and let ψ be the spiral similarity

at Z sending FE to BC. By Claim 2, ψ sends R to Q. Also let it send D to J , A to K, and P

to X. It is not hard to see that J lies on (BIC) with IJ ⊥ BC and K is the midpoint of arc

BAC on the circumcircle. Furthermore, since (EF ;PR) is harmonic, so is (BC;XI); but KB

and KC are tangent to (BIC), so X lies on both (BIC) and KI.

Let S = DJ ∩AK. It suffices to show that S lies on line PQ.

Claim 3. A, S, D, P , Z are concyclic.

Proof. By the spiral similarity at Z, points A, S, D, Z are already concyclic. But

]APD = ]RPD = ]RDB = ](AI,BC) = ](AS,DJ) = ]AZD,

as desired.

Claim 4. X, P , Q, S are collinear.

Proof. By the spiral similarity at Z, ]ZPX = ]ZAK = ]ZAS = ]ZPS, so X, P , S are

collinear. Finally, notice that ]BQX = ]BCX = ]FEP = ]BFP = ]BQP .

Claim 4 is exactly what we want to show, so we are done.

Second solution, by inversion Let Ω be the circumcircle of 4BIC and D′ the antipode of D

on ω. First we claim that Q ∈ Ω. This follows from

]BQC = ]BQP + ]PQC = ]BFP + ]PEC

= ]FEP + ]PFE = ]FPE = ]FDE = ]BIC.

Furthermore, the systems 4AFE ∪ ω and 4KBC ∪ Ω are similar since KB and KC are

tangent to Ω and ]FAE = ]BKC. Let KI intersect Ω again at X. Noting that IK is the

K-symmedian of 4IBC, we have

]BQP = ]BFP = ]FRP = ]FRA = ]BIK = ]BIX = ]BQX,

so X, P , Q are collinear. Let S = DI ∩AK. It suffices to show that S lies on line PX.

D

E F

R

P

D′

I

A

BC
X

S

H

Invert about ω, sending A, B, C to A′, B′, C ′, the midpoints of EF , FD, DE respectively.

Since BICX is harmonic, X is sent to the midpoint of B′C ′ (which also happens to be the

midpoint of DA′). Moreover S is sent to S′, the projection of A′ onto DD′. It is sufficient

9



IMO 2019 Eric Shen (Last updated April 29, 2020)

to show that PX ′IS′ is cyclic. From here on we omit the prime symbol from images of the

inversion for readability.

Since ERFP is harmonic, it is well-known that P lies on HAD′. Finally, P , X, I, S lie on

the nine-point circle of 4ADD′, so we are done.

Third solution, by the Iran Lemma Let IA be the A-excenter, Ω the circumcircle of 4BIC,

and let PQ and DI intersect ω again at T and D+ respectively. Denote by D′ the reflection of

D over AI and M the midpoint of EF . Let K be the midpoint of arc BAC on the circumcircle,

and let Q′ lie on Ω such that IQ′ ⊥ B′C ′. Denote B+ = BQ ∩ EF and C+ = CQ ∩ EF , and

let IB+ and IC+ intersect Ω again at B′ and C ′ respectively.

A

B C

K

I

IA

D

E

F

M

R

P

T D+

S

B+

C+

B′

C′

D′

Q

N

Claim 1. BCIQ is cyclic.

Proof. Just notice that

]BQC = ]BQP + ]PQC = ]BFP + ]PEC

= ]FEP + ]PFE = ]FPE = ]FDE = ]BIC,

as desired.

Claim 2. B+ lies on (CPQE) and C+ lies on (BPQF ).

Proof. ]CEB+ = ]AEF = ]CIB = ]CQB = ]CQB+ and similarly ]BFC+ = ]BQC+.

10
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Claim 3. B′ and C ′ are the reflections of C and B respectively across AI.

Proof. By Reim’s Theorem on (BPQFC+) and Ω, FC+ ‖ B′C. Then BC ′ and B′C are both

perpendicular to AI, and the desired result follows.

Claim 4. QIB+C+ is cyclic.

Proof. ]QIB+ = ]QIB′ = ]QBB′ = ]QBF = ]QC+F = ]QC+B+.

Claim 5. IAQ bisects B′C ′.

Proof. By the Iran Lemma on 4AB′C ′, B+ and C+ lie on (B′C ′). Since Q is the Miquel point

of B′C ′C+B+, this is just a well-known result applied to 4IB′C ′: If H denotes the orthocenter

of 4IB′C ′, then Q lies on the circle with diameter IH (since H = B′C+ ∩ C ′B+). But it is

well-known that IA is the reflection of H over the midpoint N of B′C ′. Thus N lies on QIA, as

desired.

Notice that

]IAB
′C ′ = ]IACC

′ = ]IACA = ]BIA = ]DFE,

so 4IAB′C ′ ∼ 4DFE. Since

]B′IAQ = ]B′BQ = ]FBQ = ]FPQ = ]FPT

but IAQ bisects B′C ′, T lies on PQ.

By Brocard’s Theorem on DPTD+, S = DD+ ∩PT lies on the polar of M , which is the line

through A perpendicular to AI. This completes the proof.

Fourth solution, by two inversions (Brandon Wang, Luke Robitaille, Michael Ren, Evan

Chen) Invert about ω and then invert about P . It is not hard to check that this gives the

following problem.

Let PEF be a triangle and let the P -symmedian meet EF and (PEF ) at K and

L respectively. Let D lie on EF with ∠DPK = 90◦, and let T be the foot from

K to DL. Denote by I the reflection of P about EF . Finally, let M and N be

the harmonic conjugates of P with respect to DE and DF respectively. Prove that

lines EM , FN , TI are concurrent
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Z

E
F

P

I

L

K W

M

N
Q

D

T

Since DPWL is cyclic, ]ZEP = ]ZLP = ]WLP = ]WDP = ]EDP , so ZE is tangent to

(DPE); similarly, ZF is tangent to (DPF ).

Note that 4WTP is the orthic triangle of 4DKL, so it is well-known that WD bisects

∠PTK. However I is the reflection of P over WD, so W , T , I are collinear.

Finally, −1 = E(PM ;DZ) = F (PN ;DZ) = W (PI;DZ), so EM , FN , WI concur on PZ,

as desired.

Fourth solution, by linearity (Edward Wan) Let (BPE) and (CPF ) intersect BC again at

B1 and C1 respectively. We start with this familiar claim.

Claim 1. 4RFE ∼ 4IBC.

Proof. This is just angle chasing:

]RFE = ]RDE = 90◦ − ]DEF = ]FDI = ]FBI = ]IBC,

and similarly ]FER = ]BCI, as desired.

Claim 2. DB1 : DC1 = AC : AB.

Proof. First ]PB1C1 = ]PB1B = ]PFB = ]PEF , so 4PB1C1 ∼ 4PEF . But PERF is

harmonic, so
PB1

PC1
=
PE

PF
=
RE

RF
=
IC

IB
=

sin 1
2B

sin 1
2C

.

However

]B1PD = ]B1PF + ]FPD = ]B1BF + ]FED = ]DBF + ]FED

= ]DIF + ]FED = 2]DEF + ]FED = ]DEF,

so ∠B1PD = 90◦ ± 1
2B and ∠C1PD = 90◦ ∓ 1

2C. Thus by the Ratio Lemma,

DB1

DC1
=
PB1 sin∠B1PD

PC1 sin∠C1PD
=

sin 1
2B cos 1

2B

sin 1
2C cos 1

2C
=

sinB

sinC
=
AC

AB
,

as desired.
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Now define functions f1, f2 : R2 → R by

f1(•) = Pow(•, (BI))− Pow(•, (CI)),

f2(•) = Pow(•, (BPF ))− Pow(•, (CPE)).

It is well-known that f1 and f2 are linear. Also let the external angle bisector of ∠A intersect

BC at Y and DI at S. It suffices to show that f2(S) = 0.

Claim 3. For all points • on AS, f1(•) = f2(•).

Proof. Clearly f1(A) = AB ·AF −AC ·AE = f2(A), so it suffices to show that f1(Y ) = f2(Y ).

But this is equivalent to

Y B · Y D − Y C · Y D = Y B · Y B1 · Y C · Y C1,

or rather Y B ·DB1 = Y C ·DC1. However Y B : Y C = AB : AC by the Angle Bisector Theorem,

so our claim has been reduced to Claim 2.

Finally S lies on DI, the radical axis of (BI) and (CI). Hence f2(S) = f1(S) = 0, and we

are done.

Fifth solution, by elliptic curves (yaron235) Instead we prove the following generalization:

Let ABC be a triangle and let E and F be points on AC and AB respectively.

Let D be a point in the plane and let K be the intersection of the circumcircles

of 4DEC and 4DFB. Let S be the intersection point of DK and a line through

A and parallel to EF , and let P be the second intersection of the circumcircles of

4ASD and 4FED. Denote by Q the second intersection of the circumcircles of

4PEC and 4PFB. Prove that S lies on PQ.

It is not hard to check that the problem is a special case of this generalization; the only work

that needs to be done is to prove this claim:

Claim 1. In the language of the original problem, ASDP is cyclic.

Proof. Fortunately this is not hard. Just notice that

]APD = ]RPD = 90◦ + ]EFD + ]FED = ](AI,BC) = ]ASD,

done.

Now let’s prove the generalization. Work in CP2, and let I = (1 : i : 0) and J = (1 : −i : 0)

denote the two circular points at infinity, i.e. the two points at infinity common to every

circle. Let γ be the locus of points X with the property that S lies on the radical axis of the

circumcircles of 4XEC and 4XFB. We only need to prove that P lies on this locus.

Claim 2. γ is an elliptic curve.

Proof. Indeed, if X moves with degree 1, then Y , the intersection of (XEC) and (XFB),

moves with degree 2 by homography. Thus the collinearity of points X, Y , S has degree 3, as

desired.
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By construction, points S, D, K already lie on γ. Of course points B, F , C, E, I, J lie on

γ as well, since we can select arbitrary circles through two points. Also note that for all points

X in γ, the second intersection Y of (XEC) and (XFB) also lies on γ, so in the group of γ,

X + Y + C + E + I + J = X + Y + B + F + I + J = 0. In particular, C + E = B + F , so

A = CE ∩ BF lies on γ. Also X, Y , S are collinear by definition, so X + Y + S = 0 and thus

C + E + I + J = B + F + I + J = S. Moreover A, C, E are collinear, so A+ C + E = 0 and

I + J = A+ S. It follows that ∞EF , the point at infinity along EF , lies on γ.

Recall that we want to prove that P lies on γ. But (DEF ) intersects γ again at −(D +E +

F + I + J) and (ASD) intersects γ again at −(A+S +D+ I + J). It is sufficient to show that

these are the same point. But ∞EF = EF ∩AS lies on γ, so E +F = A+ S, and we are done.
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