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§0 Problems

Problem 1. Let Γ be the circumcircle of acute triangle ABC. Points D and E are on segments

AB and AC respectively such that AD = AE. The perpendicular bisectors of BD and CE

intersect minor arcs AB and AC of Γ at points F and G respectively. Prove that lines DE and

FG are either parallel or are the same line.

Problem 2. Find all integers n ≥ 3 for which there exist real numbers a1, a2, . . . , an+2 satis-

fying an+1 = a1, an+2 = a2, and

aiai+1 + 1 = ai+2

for all i = 1, 2, . . . , n.

Problem 3. An anti-Pascal triangle is an equilateral triangular array of numbers such that,

except for the numbers in the bottom row, each number is the absolute value of the difference

of the two numbers immediately below it. For example, the following is an anti-Pascal triangle

with four rows which contains every integer from 1 to 10.

4

2 6

5 7 1

8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1 to

1 + 2 + 3 + . . .+ 2018?

Problem 4. A site is any point (x, y) in the plane such that x and y are both positive integers

less than or equal to 20.

Initially, each of the 400 sites is unoccupied. Amy and Ben take turns placing stones with

Amy going first. On her turn, Amy places a new red stone on an unoccupied site such that the

distance between any two sites occupied by red stones is not equal to
√

5. On his turn, Ben

places a new blue stone on any unoccupied site. (A site occupied by a blue stone is allowed to

be at any distance from any other occupied site.) They stop as soon as a player cannot place a

stone.

Find the greatest K such that Amy can ensure that she places at least K red stones, no

matter how Ben places his blue stones.

Problem 5. Let a1, a2, . . . be an infinite sequence of positive integers. Suppose that there is

an integer N > 1 such that, for each n ≥ N , the number

a1
a2

+
a2
a3

+ · · ·+ an−1
an

+
an
a1

is an integer. Prove that there is a positive integer M such that am = am+1 for all m ≥M .

Problem 6. A convex quadrilateral ABCD satisfies AB ·CD = BC ·DA. Point X lies inside

ABCD so that

∠XAB = ∠XCD and ∠XBC = ∠XDA.

Prove that ∠BXA+ ∠DXC = 180◦.
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§1 IMO 2018/1 (HEL)

Problem 1

Let Γ be the circumcircle of acute triangle ABC. Points D and E are on segments AB

and AC respectively such that AD = AE. The perpendicular bisectors of BD and CE

intersect minor arcs AB and AC of Γ at points F and G respectively. Prove that lines DE

and FG are either parallel or are the same line.

First solution, by constructing parallelograms Construct points P and Q on Γ such that

ABFP and ACGQ are isosceles trapezoids, and let M and N be the midpoints of minor arcs

AB and AC respectively. It is obvious that M and N are the midpoints of arcs PF and QG as

well. Since AP = BF = DF and AQ = CG = EG, APFD and AQGE are parallelograms.

A

B C

D
E

F

G
M

N
P

Q

Note that PF = AD = AE = QG, so P̂F = Q̂G and thus M̂F = N̂G. It follows that FGNM

is an isosceles trapezoid, so FG ‖MN . But both DE and MN are perpendicular to the internal

angle bisector of ∠A, so DE and FG are parallel, as desired.

Second solution, by angle chasing Let FD and GE intersect Γ again at X and Y respectively.

Notice that

]AXD = ]AXF = ]ABF = ]DBF = ]FDB = ]XDA,

whence AX = AD. Analogously, AY = AE, so D, E, X, Y lie on a circle with center A.

Finally, by Reim’s Theorem, DE ‖ FG, as desired.
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§2 IMO 2018/2 (SVK)

Problem 2

Find all integers n ≥ 3 for which there exist real numbers a1, a2, . . . , an+2 satisfying

an+1 = a1, an+2 = a2, and

aiai+1 + 1 = ai+2

for all i = 1, 2, . . . , n.

The answer is 3 | n, achieved by the sequence (2,−1,−1, 2,−1,−1, . . .). I claim that ai = ai+3

for all i, so if 3 - n, the sequence is constant; this concludes the proof, as x2 + 1 = x has no real

root. Check that

n∑
i=1

a2i+2 =

n∑
i=1

(aiai+1ai+2 + ai+2) =

n∑
i=1

(aiai+1ai+2 + ai) =

n∑
i=1

aiai+3.

This can be rewritten as 0 =
∑n

i=1 (ai − ai+3)
2, hence done.
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§3 IMO 2018/3 (IRN)

Problem 3

An anti-Pascal triangle is an equilateral triangular array of numbers such that, except for

the numbers in the bottom row, each number is the absolute value of the difference of the

two numbers immediately below it. For example, the following is an anti-Pascal triangle

with four rows which contains every integer from 1 to 10.

4

2 6

5 7 1

8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from

1 to 1 + 2 + 3 + . . .+ 2018?

The answer is no. Let N = 2018, and assume for the sake of contradiction such a triangle exists.

For each number x not at the bottom, let its children be y and z. Draw an arrow from x to

max(y, z), so that if y > z, we draw an arrow from x to y, and also y = x+ z.

Let the chain starting from the top element be a1, a2, . . ., aN (so that aN is in the bottom

row). Since at each step we increment by a different positive integer, it can be shown by

induction that ai ≥ 1 + 2 + · · ·+ i. That is, aN ≥ 1 + 2 + · · ·+N . Since every number in the

triangle does not exceed 1 + 2 + · · · + N , equality holds, and the numbers 1 through 2018 are

all adjacent to some number in the chain. Consider the two subtriangles shown below.

We do not include 1 + 2 + · · · + N nor the two adjacent numbers, so neither triangle contains

any integer 1 through 2018. By the Pigeonhole Principle one triangle has at least 1008 elements

in its bottom row, so the number X at the bottom of the chain from the triangle’s topmost

element is greater than

X ≥ (N + 1) + (N + 2) + · · ·+ (N + 1008)

= 1008N + 504 · 1009

= 1009(N + 504)−N
> 1009(N + 1)

= 1 + 2 + · · ·+N,

a contradiction.
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§4 IMO 2018/4 (ARM)

Problem 4

A site is any point (x, y) in the plane such that x and y are both positive integers less than

or equal to 20.

Initially, each of the 400 sites is unoccupied. Amy and Ben take turns placing stones

with Amy going first. On her turn, Amy places a new red stone on an unoccupied site such

that the distance between any two sites occupied by red stones is not equal to
√

5. On

his turn, Ben places a new blue stone on any unoccupied site. (A site occupied by a blue

stone is allowed to be at any distance from any other occupied site.) They stop as soon as

a player cannot place a stone.

Find the greatest K such that Amy can ensure that she places at least K red stones, no

matter how Ben places his blue stones.

The answer is 100. To achieve this, checkerboard-color the grid and let Amy take half of the

black squares. Now we show that for each 4× 4 grid, Amy can place at most four stones if Bob

plays optimally. This is clearly sufficient. Consider the following dissection into 4-cycles:

Whenever Amy plays in this 4× 4 grid, Bob puts a stone in the opposite vertex in the 4-cycle

Amy’s stone belongs to. Thus Amy can put at most one stone in each 4-cycle, so we are done.
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§5 IMO 2018/5 (MNG)

Problem 5

Let a1, a2, . . . be an infinite sequence of positive integers. Suppose that there is an integer

N > 1 such that, for each n ≥ N , the number

a1
a2

+
a2
a3

+ · · ·+ an−1
an

+
an
a1

is an integer. Prove that there is a positive integer M such that am = am+1 for all m ≥M .

Consider the partial difference

x =
an
an+1

+
an+1

a1
− an
a1

=
a1an + a2n+1 − anan+1

a1an+1
.

Take a prime p and analyze the p-adic valuation of the sequence. Assume that for all n,

νp(an) 6= νp(an+1). This is a valid assumption, because if νp(an) = νp(an+1), then x = 1, which

is an integer.

Since x is always an integer, we have a few cases to consider:

Claim. For all n,

• If νp(an) > νp(an+1), then νp(an+1) ≥ νp(a1).

• If νp(an) < νp(an+1), then νp(an+1) = νp(a1).

Proof. The first case is trivial. Just note that νp(an/an+1) ≥ 0, so a1 | an+1 − an. Now, if

νp(an) < νp(an+1), then an/an+1 will not be an integer, whence νp(an+1) ≤ νp(a1). However if

νp(an+1) < νp(a1), then an/an+1 and (an+1−an)/a1 cannot sum to an integer, contradiction.

It is now obvious that the sequence defined by νp(an) will eventually converge, and there can

be a jump in the sequence of νp’s (the second case above) only if p | a1, which occurs for finitely

many p. Thus the sequence is eventually constant.
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§6 IMO 2018/6 (POL)

Problem 6

A convex quadrilateral ABCD satisfies AB · CD = BC ·DA. Point X lies inside ABCD

so that

∠XAB = ∠XCD and ∠XBC = ∠XDA.

Prove that ∠BXA+ ∠DXC = 180◦.

First solution, by inversion We first require the following two lemmas.

Lemma 1

If two quadrilaterals have the same angles and both obey AB · CD = BC ·DA, then they

are similar.

Proof. Omitted.

Lemma 2

If point S in quadrilateral ABCD has a isogonal conjugate S∗, then ∠BSA+∠DSC = 180◦.

Proof. Let P = AB ∩CD and Q = AD ∩BC, and denote by W , X, Y , Z the projections of S

onto AB, BC, CD, DA respectively. Note that S and S∗ are isogonal conjugates with respect

to the four triangles 4PAD, 4PBC, 4QAB, and 4QDC. Since the center of the pedal circle

of S is the midpoint of SS∗, points W , X, Y , Z lie on the pedal circle of S.

Now, all that remains is an angle chase:

]BSA+ ]DSC = ]BSW + ]WSA+ ]DSY + ]Y SC

= ]BXW + ]WZA+ ]DZY + ]Y XC

= ]WZY + ]Y XW = 0◦,

as desired.

Now, invert about X with arbitrary radius r, denoting the inverse of T by T ′. Notice that

]XB′A′ = −]XAB = −]XCD = ]XD′C ′, and similarly ]XC ′B′ = ]XA′D′. Furthermore

by the Inversion Distance Formula,

A′B′ · C ′D′ = r2 ·AB
XA ·XB

· r
2 · CD

XC ·XD
=

r2 ·BC
XB ·XC

· r
2 ·DA

XD ·XA
= B′C ′ ·D′A′.

We can also check that

]D′A′B′ = ]D′A′X + ]XA′B′ = ]XDA+ ]ABX = ]XBC + ]ABX = ]ABC,

and analogously we find by Lemma 1 that D′A′B′C ′ ∼ ABCD. Transforming D′A′B′C ′ back

to ABCD, X is mapped to its isogonal conjugate, so by Lemma 2, ∠BXA + ∠DXC = 180◦,

and we are done.
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A

D

CBQ

R

K
L

X

Second solution, by angle chasing Let Q = AD ∩ BC. Since AB/AD = CB/CD, there

exists a point E on BD such that AE bisects ∠DAB and CE bisects ∠BCD. Thus there

exists a point K on BD with ]CAB = ]DAK and ]BCA = ]KCD. Let the circumcircles

of 4AKB and 4CKD intersect at X. I claim that X is the desired point. First, we prove a

key claim.

Claim. BD bisects ∠AKC.

Proof. Notice that

KA

KD
=

sin∠BDA
sin∠KAD

=
sin∠BDA
sin∠BAC

and
KC

KD
=

sin∠BDC
sin∠KCD

=
sin∠BDC
sin∠BCA

.

By the ratio lemma,

KA

KC
=

sin∠BDA
sin∠BDC

· sin∠BCA
sin∠BAC

=
RA

RC
· DC
DA
· BA
BC

=
RA

RC
,

and the desired result readily follows.

Notice that by the claim, ]BXA + ]DXC = ]DXA + ]BXC = ]DKA + ]BKC = 0◦,

so it is sufficient to show that ]XBC = ]XDA (and the other case follows analogously). But

]BXD = ]BXK + ]KXD = ]BAK + ]KCD = ]CAD + ]BCA = ]CQA,

so BQDX is cyclic and ]XBC = ]XBQ = ]XDQ = ]XDA, as desired.
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